Author: Oriol Zertuche

Oriol Zertuche is the CEO of CODESM and Cody AI. As an engineering student from the University of Texas-Pan American, Oriol leveraged his expertise in technology and web development to establish renowned marketing firm CODESM. He later developed Cody AI, a smart AI assistant trained to support businesses and their team members. Oriol believes in delivering practical business solutions through innovative technology.

2023년 SEO를 위한 상위 10대 AI 도구 [With Latest Features]

If you're also looking to use AI Tools for SEO, this blog will guide you to a number of AI-powered solutions to improve your SEO strategies.

2023년 이전에는 마케터의 10%만이 SEO(검색 엔진 최적화) 콘텐츠 생성을 위해 AI 도구를 사용했습니다. 하지만 올해는,
58%
에 투자할 계획이 있다고 답한 비율 비즈니스용 AI 콘텐츠 및 SEO 전략. 이는 상당한 도약입니다!

SEO에 AI를 활용하고자 하는 경우, 이 블로그에서 SEO 전략을 개선할 수 있는 다양한 AI 기반 솔루션에 대해 안내합니다. 최적화된 콘텐츠 제작에 사용할 수 있는 가장 강력한 AI 도구를 알아보세요!

1. SurferSEO

이 목록의 1위는 SurferSEO입니다. 비즈니스용 AI 어시스턴트 는 사용자가 선택한 키워드에 대한 상위 순위 웹사이트를 분석하여 타겟팅된 온페이지 추천을 제공합니다. 키워드 밀도부터 시맨틱 분석까지, 데이터 기반 추천 기능을 제공하여 작성하는 콘텐츠의 품질을 높여줍니다. SurferSEO는 작가보다 7배 저렴한 비용으로 20분 이내에 기사를 작성할 수 있다고 주장합니다!

주요 기능

  • 페이지 내 SEO 최적화
  • 웹사이트의 백링크 제안
  • 키워드 밀도 분석

가격

  • Essentials 요금제: 월 $69
  • 고급 요금제: 월 $149
  • 최대 요금제: 월 $249
  • 엔터프라이즈 요금제: 맞춤 견적
  • 서퍼 AI: 문서당 $29
  • 감사 애드온: 월 $49
  • SERP(검색 엔진 결과 페이지) 분석기 애드온: 월 $29
  • 화이트 라벨 애드온: 월 $49
  • API 애드온: 월 $29

평점: 4.8/5

이 목록에서 1위를 차지한 SurferSEO는 사용자가 선택한 키워드에 대해 상위 순위 웹사이트를 분석하고 타겟팅된 온페이지 추천을 제공하는 비즈니스 SEO용 AI 도구입니다.

2. SEMrush

키워드 조사부터 경쟁사 동향 모니터링에 이르기까지 SEMrush는 다양한 AI 기반 서비스를 제공합니다. 여기에는 많은 것이 포함됩니다. AI 어시스턴트 검색 결과에서 웹사이트의 순위를 모니터링하고 개선 기회를 파악하며 사람들이 무엇을 찾고 있는지 파악할 수 있는 도구입니다.

도메인과 타겟 키워드를 입력할 수 있습니다. SEMrush는 Google 검색 결과의 첫 페이지를 검토하여 단 15분 만에 키워드를 제안합니다!

주요 기능

  • 상세 키워드 데이터
  • 백링크 프로필 평가
  • 실시간 콘텐츠 최적화 제안

가격

  • 무료 평가판 사용 가능
  • 사용자 지정 요금제 사용 가능
  • 프로 요금제: 월 $129.95
  • 전문가 요금제: 월 $249.95
  • 비즈니스 요금제: 월 $499.95

평점: 4.5/5

키워드 조사부터 경쟁사 동향 모니터링에 이르기까지 다양한 인공지능 기반 서비스를 제공하는 SEO용 인공지능 도구인 SEMrush를 사용해 보세요.

3. 키워드 인사이트

키워드 인사이트는 다음을 기반으로 하는 직관적인 SEO 도구입니다. 비즈니스용 AI 간단한 쿼리로 키워드를 생성하고 자연어 처리(NLP)를 사용하여 키워드를 자동으로 그룹화할 수 있는 콘텐츠 기획 도구입니다.

주요 기능

  • 시드 용어, 위치 및 언어를 기반으로 한 빠른 키워드 생성
  • 관련 클러스터링 인사이트
  • 검색 엔진 결과 페이지에서 머신 러닝 기반 키워드 검색 의도 식별 및 분류

가격

  • 가격 정보를 사용할 수 없습니다.

평점: 4.9/5

키워드 인사이트는 비즈니스 콘텐츠 기획을 위한 AI 기반의 직관적인 SEO 도구로, 간단한 쿼리로 키워드를 생성하고 자연어 처리(NLP)를 사용하여 자동으로 키워드를 그룹화할 수 있습니다.

4. 클리어스코프

클리어스코프는 인공지능을 사용하여 해당 분야에서 가장 많이 읽은 기사를 분석하여 콘텐츠의 키워드와 주제를 제안합니다. 콘텐츠를 사용자 목적에 맞게 조정하면 더 완전하고 관련성이 높은 기사를 만들 수 있습니다.

주요 기능

  • AI 기반 상위 랭킹 기사 분석
  • 키워드 및 구문 제안
  • 콘텐츠 도구와 통합

가격

  • Essentials 요금제: 월 $170
  • 사업 계획: 맞춤 견적
  • 엔터프라이즈 요금제: 맞춤 견적

평점: 4.9/5

클리어스코프는 인공지능을 사용하여 해당 분야에서 가장 많이 읽힌 기사를 분석하여 콘텐츠의 키워드와 주제를 제안합니다.

5. 프레이즈

프레이즈는 사용자 친화적인 SEO AI 어시스턴트 콘텐츠를 구성, 제작, 최적화할 수 있는 간단한 인터페이스를 제공합니다. 글 제목을 입력하면 상위 경쟁자의 콘텐츠가 자동으로 검토됩니다. 또한 아이디어를 떠올리고 콘텐츠 작성 프로세스를 신속하게 진행할 수 있도록 AI 작가 기능이 이미 통합되어 있습니다.

주요 기능

  • SEO 분석
  • 경쟁사 분석 도구
  • 직관적인 사용자 인터페이스

가격

  • 솔로 요금제: 월 $14.99
  • 기본 요금제: 월 $44.99
  • 팀 요금제: 월 $114.99
  • 엔터프라이즈 요금제: 맞춤 견적
  • 무제한 AI 콘텐츠를 위한 프로 애드온: 월 $35

평점: 4.9/5

프레이즈는 콘텐츠 구성, 제작, 최적화를 위한 간단한 인터페이스를 갖춘 사용자 친화적인 SEO AI 어시스턴트입니다.

6. 6. 서프스탯

Serpstat은 키워드 조사, 백링크 분석, AI 알고리즘을 사용한 사이트 감사 등의 서비스를 제공합니다. 경쟁사의 B2B 콘텐츠 전략에 대한 인사이트를 제공하고 웹사이트에서 개발할 부분을 강조함으로써 데이터 기반의 의사 결정을 내릴 수 있도록 지원합니다.

주요 기능

  • 상세 키워드 데이터
  • 특정 키워드에 대한 검색 엔진 순위 추적
  • 로컬 SEO 전략

가격

  • 무료 평가판 사용 가능
  • 사용자 지정 요금제 사용 가능
  • 개인 요금제: 월 $59
  • 팀 요금제: 월 $119
  • 대행사 요금제: 월 $479

평점: 4.6/5

Serpstat은 키워드 조사, 백링크 분석, AI 알고리즘을 사용한 사이트 감사 등의 서비스를 제공합니다.

7. SE 랭킹

탄탄한 온페이지 및 오프페이지 최적화 계획을 개발하기 위해 SE랭킹은 소셜 미디어 플랫폼 및 경쟁사, 검색 트래픽, 경쟁사의 성과를 분석할 수 있는 심층적인 툴킷을 제공합니다. 또한 화이트 라벨 솔루션과 함께 API 기반 SEO 보고서도 제공합니다. 또한 리드 생성기 위젯은 전환율을 극대화하는 데 도움이 됩니다.

주요 기능

  • 경쟁사 및 내 콘텐츠에 대한 SEO 성능 모니터링
  • 핵심 웹 지표, 크롤링된 페이지 및 상태 점수를 위한 단일 대시보드입니다.
  • 웹 페이지 인덱싱

가격

  • 14일 무료 평가판 사용 가능
  • 사용자 지정 요금제 사용 가능
  • 필수 요금제: 월 $55
  • 프로 요금제: 월 $109
  • 비즈니스 요금제: 월 $239

평점: 4.8/5

탄탄한 온페이지 및 오프페이지 최적화 계획을 개발하기 위해 SE랭킹은 소셜 미디어 플랫폼 및 경쟁사, 검색 트래픽, 경쟁사의 성과를 분석할 수 있는 심층적인 툴킷을 제공합니다.

8. 워드 리프트

비교적 최근에 출시된 SEO 도구인 WordLift는 다음을 사용하여 구조화된 데이터를 생성하는 데 사용되는 맞춤형 지식 그래프 도구입니다. 비즈니스용 AI. HTML 파일의 메타 설명을 새 텍스트로 업데이트합니다. 제안된 콘텐츠 조정은 웹사이트 방문자의 사용자 경험을 개선하는 데 도움이 됩니다.

주요 기능

  • 이커머스 웹사이트 순위 향상을 위한 설계
  • Google 쇼핑에서 더 잘 표시되도록 콘텐츠 구성
  • Data Studio와 통합

가격

  • 무료 평가판 사용 가능
  • 사용자 지정 요금제 사용 가능
  • 스타터 요금제: 월 €59
  • 프로페셔널 요금제: 월 €99
  • 비즈니스 + 전자 상거래 요금제: 월 €249

평점: 4.7/5

비교적 최근에 출시된 SEO 도구인 WordLift는 비즈니스용 AI를 사용하여 구조화된 데이터를 생성하는 데 사용되는 맞춤형 지식 그래프 도구입니다.

9. 마켓뮤즈

MarketMuse는 SEO 전략과 콘텐츠 인텔리전스를 관리하기 위한 도구 세트를 제공합니다. 개별 페이지 및 ‘콘텐츠 클러스터’에 대한 피드백을 제공하여 여러 페이지 모음에서 주제의 관련성과 권위를 평가합니다. 다음을 사용할 수 있습니다. AI 어시스턴트 를 사용하여 콘텐츠를 기획하고, 클러스터링하고, 경쟁사와 비교 분석하고, 콘텐츠 개요를 검토하고, 최적화할 수 있습니다.

주요 기능

  • 상세한 SERP 분석
  • 콘텐츠 요약 생성기
  • 콘텐츠 기획 도구

가격

  • 7일 무료 평가판 사용 가능
  • 표준 요금제: 월 $149
  • 팀 요금제: 월 $399
  • 프리미엄: 맞춤 견적

평점: 4.6/5

MarketMuse는 SEO 전략과 콘텐츠 인텔리전스를 관리하기 위한 일련의 AI 도구를 제공합니다.

10. 재스퍼

재스퍼는 제너레이티브 분야의 초기 승자로 간주됩니다. 비즈니스용 AI. 이를 통해 업계와 타겟 시장에 가장 적합한 콘텐츠 프롬프트를 만들 수 있습니다. 블로그 게시물, 소셜 미디어 게시물, 웹사이트 카피에 회사의 브랜드 보이스를 반영하는 흥미롭고 독특한 콘텐츠를 제작하는 동시에 웹사이트 순위를 높일 수 있습니다.

주요 기능

  • 브랜드 메시지를 위한 브랜드 보이스 트레이닝
  • 숏폼 및 롱폼 콘텐츠 제작
  • SurferSEO 통합
  • 25개 언어 지원

가격

  • 7일 무료 체험
  • 크리에이터 요금제: 월 $49
  • Teams 플랜: 월 $125
  • 비즈니스: 맞춤 견적

평점: 4.7/5

재스퍼는 비즈니스용 제너레이티브 AI의 초기 승자로 꼽힙니다. 이를 통해 업계와 타겟 시장에 가장 적합한 콘텐츠 프롬프트를 만들 수 있습니다.

비즈니스에 가장 적합한 AI SEO 도구를 선택하는 방법은?

비즈니스에 가장 적합한 AI SEO 도구를 선택하는 것은 디지털 마케팅과 SEO 전략에 큰 영향을 미칠 수 있는 중요한 결정입니다. 정보에 입각한 선택을 하려면 다음 요소를 고려하세요:

1. 워크플로우와 통합

AI SEO 도구가 현재 사용 중인 콘텐츠 제작 워크플로, 프로젝트 관리 솔루션 및 기타 도구와 얼마나 잘 통합되는지 평가하세요. 원활한 통합을 통해 효율성을 높이고 프로세스를 간소화할 수 있습니다.

2. 데이터 소스 및 인사이트

AI SEO 도구의 데이터 소스를 검토하여 제안을 하고 콘텐츠를 생성하세요. 다양한 데이터에 액세스하는 도구는 보다 정확한 인사이트를 제공할 수 있습니다. 도구가 특정 산업 또는 틈새 시장에 적합한지 확인하세요.

3. 작업 자동화

AI SEO 도구가 시간이 많이 걸리고 반복적인 작업을 자동화하는지 확인하세요. 키워드 조사, 콘텐츠 최적화, 실적 추적을 자동화하는 기능을 찾아보세요. 자동화를 통해 귀중한 시간과 리소스를 절약할 수 있습니다.

4. 사용자 친화적인 인터페이스

플랫폼이 SEO 프로세스를 어떻게 안내하는지 고려하세요. 직관적이고 사용자 친화적인 인터페이스를 통해 학습 곡선을 줄이고 시행착오를 최소화할 수 있습니다. 이는 사용자로 구성된 팀이 있는 경우 특히 중요합니다.

5. 협업 기능

AI SEO 도구가 협업 작업 환경을 지원하는지 평가하세요. 여러 팀원이 SEO 작업을 공동 작업하고 인사이트를 공유하며 진행 상황을 추적할 수 있어야 합니다. 대규모 프로젝트에서는 협업이 매우 중요합니다.

6. 콘텐츠 최적화 기능

콘텐츠 최적화 기능을 제공하는 AI SEO 도구를 찾아보세요. 여기에는 콘텐츠를 분석하고 개선 사항을 제안하는 머신 러닝과 콘텐츠의 품질을 향상시키는 자연어 처리(NLP)가 포함됩니다. AI 텍스트 생성도 SEO 친화적이어야 합니다.

7. 키워드 연구 기능

도구에 강력한 키워드 조사 기능이 있는지 확인하세요. 여러 검색 엔진에서 실적이 잘 나올 만한 주제를 찾는 데 도움이 됩니다. 키워드 조사는 성공적인 SEO의 초석입니다.

8. 평가판 기간 또는 데모

가능하면 AI SEO 도구 제공업체에서 제공하는 체험 기간이나 데모를 활용하세요. 이를 통해 실제 시나리오에서 도구를 테스트하고 비즈니스 요구 사항에 대한 적합성을 평가할 수 있습니다.

9. 고객 지원 및 교육

도구 제공업체가 제공하는 고객 지원 및 교육 수준을 고려하세요. 튜토리얼, 문서 및 신속한 고객 지원에 대한 액세스는 원활한 도입 프로세스에 매우 유용할 수 있습니다.

10. 리뷰 및 사용 후기

AI SEO 도구를 사용한 다른 비즈니스의 리뷰와 추천글을 살펴보세요. 이를 통해 실제 성능과 효과에 대한 인사이트를 얻을 수 있습니다.

자세히 보기: 2023년 마케팅을 위한 상위 11가지 AI 도구: 궁극적인 마케터를 위한 스택

현명한 SEO용 AI 도구 선택

SEO에 AI를 활용하는 사례가 빠르게 증가하고 있으며, 그럴 만한 이유가 있습니다. AI 기반 도구를 사용하면 시간을 절약하고 검색 엔진 결과 페이지에서 높은 순위를 차지할 가능성이 높은 콘텐츠를 제작할 수 있습니다.

SEO용 AI를 처음 사용하는 경우 SurferSEO 또는 SEMrush와 같은 AI 어시스턴트로 시작할 수 있습니다. 이러한 도구는 키워드 조사, 경쟁사 분석, 페이지 내 SEO 최적화 등 다양한 기능을 제공합니다. AI가 SEO에 어떻게 활용될 수 있는지 더 잘 이해했다면, 프레이즈나 마켓뮤즈와 같은 보다 전문적인 도구를 살펴볼 수 있습니다.

2023년 마케팅을 위한 상위 11가지 AI 도구: 궁극적인 마케터를 위한 스택

Choose the best AI tools for marketing strategy and business in 2023

전문가들은 2028년까지 비즈니스 마케팅에서 AI가 차지하는 비중이 1, 075억 달러 이상으로 급증할 것으로 예상합니다. 실제로 시장에는 이미 마케팅을 위한 최첨단 AI 도구가 넘쳐나고 있습니다. 비즈니스 및 마케팅을 위한 고급 AI 도구를 살펴보기 전에 그 의미와 중요성을 이해해 보겠습니다.

마케팅을 위한 AI 도구란 무엇인가요?

마케팅 AI 도구는 인공 지능(AI) 기술을 활용하여 마케팅의 다양한 측면을 개선하고 간소화하는 소프트웨어 애플리케이션입니다. 이러한 도구는 머신 러닝, 마케팅 분석 및 예측 알고리즘을 활용하여 마케팅 작업을 자동화, 최적화 및 강화함으로써 궁극적으로 비즈니스와 마케팅 담당자가 데이터 기반의 의사 결정을 내리고 마케팅 전략을 개선할 수 있도록 지원합니다.

반복 작업 자동화

AI 마케팅 도구는 머신 러닝, 마케팅 분석 및 예측 알고리즘을 활용하여 데이터 분석, 보고서 생성, 이메일 마케팅 및 소셜 미디어 게시와 같은 작업을 자동화합니다. 이러한 자동화를 통해 마케터는 캠페인의 보다 전략적이고 창의적인 측면에 집중할 수 있습니다.

고객 인사이트

AI 도구는 방대한 양의 데이터를 분석하여 고객 행동, 선호도, 트렌드에 대한 인사이트를 확보합니다. 이러한 인사이트는 마케터가 특정 타겟 오디언스에 맞게 캠페인을 맞춤화하여 보다 효과적이고 개인화된 마케팅 활동을 펼치는 데 도움이 됩니다.

예측 분석

AI 마케팅 도구는 예측 알고리즘을 사용하여 트렌드와 고객 행동을 예측함으로써 마케터가 B2B 콘텐츠 전략, 타이밍, 채널에 대해 정보에 입각한 결정을 내릴 수 있도록 지원하여 궁극적으로 참여도와 전환율을 높일 수 있습니다.

챗봇 및 가상 비서

AI 기반 챗봇과 가상 어시스턴트가 고객 문의에 즉각적인 응답을 제공하며 연중무휴 24시간 지원을 제공합니다. 고객 만족도를 높이고 응답 시간을 단축합니다.

개인화

AI 도구는 동적 콘텐츠 제작 및 개인화를 지원하므로 마케터는 개별 사용자에게 맞춤형 콘텐츠를 제공하여 고객 참여를 개선하고 전환을 유도할 수 있습니다.

추천 엔진

이커머스 및 콘텐츠 기반 플랫폼은 사용자의 과거 상호 작용과 선호도를 기반으로 사용자에게 제품, 서비스 또는 콘텐츠를 제안하는 추천 엔진의 이점을 누릴 수 있습니다.

광고 최적화

AI는 최적의 광고 게재 위치, 입찰 전략, 광고 콘텐츠를 결정하여 디지털 광고 캠페인을 최적화하고 ROI를 극대화하는 데 도움을 줄 수 있습니다.

콘텐츠 생성

AI는 블로그 게시물, 제품 설명, 소셜 미디어 업데이트와 같은 서면 콘텐츠를 생성하는 데 도움을 줄 수 있습니다. 비주얼 및 동영상 제작에도 사용할 수 있습니다.

리드 점수

AI 도구는 전환 가능성에 따라 리드를 자동으로 점수화하여 영업팀이 가장 유망한 리드에 우선순위를 지정할 수 있도록 지원합니다.

A/B 테스트

AI 기반 A/B 테스트는 다양한 마케팅 자료를 테스트하여 어떤 것이 가장 효과적인지 결정하는 프로세스를 가속화할 수 있습니다.

성능 분석

AI 분석 도구는 실시간 성과 분석을 제공하여 마케터가 캠페인의 성과를 파악하고 필요에 따라 조정할 수 있도록 도와줍니다.

크로스 채널 통합

많은 AI 마케팅 도구가 다양한 마케팅 채널에 원활하게 통합되어 이메일, 소셜 미디어, 웹 등에서 마케팅에 통합된 접근 방식을 사용할 수 있습니다.

1. Jasper.ai

Jasper는 OpenAI에서 생성한 GPT3 모델을 사용하여 광고, 이메일, 랜딩 페이지, 기사 및 소셜 미디어 게시물의 텍스트를 생성합니다. 브랜드 이름 또는 제품을 제출하면 사본이 자동으로 생성됩니다. 이 AI 마케팅 도구는 몇 번의 클릭만으로 제목과 메타 설명은 물론 제품 글머리 기호나 설명도 생성할 수 있습니다.

주요 기능

  • 콘텐츠 생성
  • 톤 설정
  • 표절 검사기
  • 사용자 지정 가능한 템플릿

가격

  • 7일 무료 평가판 사용 가능
  • 스타터 $40(20,000단어)
  • 보스 모드(50,000단어) $82

평점: 4.7/5

Jasper는 OpenAI에서 생성한 GPT3 모델을 사용하여 광고, 이메일, 랜딩 페이지, 기사 및 소셜 미디어 게시물의 텍스트를 생성합니다.

2. 2.

애드버니티를 사용하면 모든 마케팅 지표를 한 곳에서 확인할 수 있습니다. 모든 채널의 캠페인을 포함하여 다양한 소스의 모든 마케팅 데이터를 중앙 집중화하여 쉽게 분석할 수 있습니다. AI 직원 팀은 이러한 방식으로 트렌드와 인사이트를 파악하여 더 현명한 의사결정을 내리는 데 필요한 정보를 제공할 수 있습니다.

주요 기능

  • 코딩 전문 지식 없이도 플랫폼을 사용할 수 있도록 사전 빌드된 커넥터와 노코드 템플릿 제공
  • 한 곳에서 모든 데이터를 제어하세요.

가격

  • 14일 무료 평가판 사용 가능
  • 표준 요금제: 월 500유로부터 시작
  • 프로페셔널 요금제: 월 2,000유로부터 시작

평점: 4.5/5

애드버니티를 사용하면 모든 마케팅 지표를 한 곳에서 확인할 수 있습니다. 모든 채널의 캠페인을 포함하여 다양한 소스의 모든 마케팅 데이터를 중앙 집중화하여 쉽게 분석할 수 있습니다.

3. 플릭

비즈니스용 플릭 소셜 미디어 AI 어시스턴트는 아이디어를 떠올리고, 게시물을 작성하고, 소셜 미디어 콘텐츠를 더 쉽게 준비할 수 있는 마케팅 도구입니다. 간단한 설정과 24시간 연중무휴 지원을 제공합니다.

주요 기능

  • AI 캡션 작성(브랜드 내)
  • AI 아이디어 브레인스토밍
  • 사후 예약
  • 자동 추천 해시태그
  • 해시태그 검색 및 관리자

가격

  • 7일 무료 평가판 사용 가능
  • 무료 요금제 사용 가능
  • 솔로 요금제: 월 £11부터 시작
  • 프로 요금제: 월 £24부터 시작
  • 대행사 요금제: 월 £55부터 시작

평점: 4.7/5

비즈니스용 플릭 소셜 미디어 AI 어시스턴트는 아이디어를 떠올리고, 게시물을 작성하고, 소셜 미디어 콘텐츠를 더 쉽게 준비할 수 있는 마케팅 도구입니다.

4. Predis.ai

프레디스는 간단한 단어 입력만으로 인스타그램 릴부터 단일 이미지 게시물까지 모든 것을 생성할 수 있는 비즈니스용 AI 어시스턴트입니다. 철저한 경쟁사 연구를 통해 경쟁사가 마케팅에 이 AI 도구를 사용하는 이유를 더욱 깊이 있게 파악할 수 있습니다.

주요 기능

  • 내장된 AI 채팅 기능으로 텍스트 생성
  • 소셜 미디어에서 일관성을 유지할 수 있도록 게시 목표를 설정하세요.

가격

  • 솔로 요금제: 월 $29
  • 스타터 요금제: 월 $59
  • 대행사 요금제: 월 $139부터 시작

평점: 4.8/5

프레디스는 간단한 단어 입력만으로 인스타그램 릴부터 단일 이미지 게시물까지 모든 것을 생성하는 비즈니스용 AI 어시스턴트로 작동합니다.

5. 5. 드리프트

Drift의 AI 기능은 대화형 마케팅에 가장 적합합니다. 중요한 계정에 VIP 경험을 제공하거나 챗봇 어시스턴트가 관리할 수 있는 간단한 질문을 처리하는 데 과중한 업무에 시달리는 지원 담당자의 업무를 덜어줄 수 있습니다.

주요 기능

  • 팝업 채팅
  • 타겟 이메일
  • 인앱 메시지
  • 실시간 채팅
  • 사용자 지정 인터페이스

가격

  • 프리미엄 요금제: 월 $2500부터 시작
  • 고급 및 엔터프라이즈 요금제: 사용자 지정 견적

평점: 4.4/5

Drift의 AI 기능은 대화형 마케팅에 가장 적합합니다.

6. 6. 성장 막대

GrowthBar는 비즈니스용 GPT-3 AI를 사용하여 콘텐츠 제작을 자동화합니다. 이 마케팅용 AI 도구는 특정 단어 수, 링크, 사진, 키워드 등을 추천할 수 있습니다. 블로그 게시물 콘텐츠 개요를 작성하고 포괄적인 백링크를 제공하는 것은 그로스바의 몇 가지 기능입니다. 또한 Chrome 애드온을 제공합니다.

주요 기능

  • 검색 엔진 최적화
  • 단락 생성기
  • 메타 생성기
  • AI 블로그 도구

가격

가격을 공개적으로 공개하지 않음

평점: 4.8/5

그로스바는 비즈니스용 GPT-3 AI를 사용하여 콘텐츠 생성을 자동화합니다. 특정 단어 수, 링크, 사진, 키워드 등을 추천할 수 있습니다.

7. Brand24

브랜드는 Brand24의 고급 AI 소셜 미디어 모니터링 플랫폼을 통해 비즈니스에 대한 긍정적인 소셜 미디어 댓글과 부정적인 소셜 미디어 댓글을 실시간으로 모니터링할 수 있습니다. 비즈니스용 AI 어시스턴트처럼 작동하며 회사, 제품, 경쟁사에 대한 온라인 토론을 조사합니다.

주요 기능

  • 토론량 차트
  • 데이터 내보내기
  • 감정 점수
  • 소셜 측정

가격

  • 무료 평가판 사용 가능
  • 개인 요금제: 월 $79
  • 팀 요금제: 월 $149
  • 프로 요금제: 월 $199
  • 엔터프라이즈 요금제: 월 $399

평점: 4.6/5

브랜드는 Brand24의 고급 AI 소셜 미디어 모니터링 플랫폼을 통해 비즈니스에 대한 긍정적인 소셜 미디어 댓글과 부정적인 소셜 미디어 댓글을 모두 실시간으로 모니터링할 수 있습니다.

8. Phrasee

Phrasee는 “브랜드 언어 최적화”를 전문으로 합니다. 이 마케팅용 AI 도구는 비즈니스 카피의 브랜드 언어를 향상시킵니다. 자연어 처리 시스템과 머신 러닝 알고리즘을 사용하여 이메일, Instagram, Facebook 또는 푸시 알림용 사본을 생성할 수 있습니다.

주요 기능

  • 콘텐츠 관리
  • 예측 분석
  • 동적 콘텐츠
  • 참여 지표

가격

맞춤 견적

평점: 4.8/5

Phrasee는

9. 마켓뮤즈

MarketMuse는 이메일, 판매 카피, 랜딩 페이지, 에세이 등 최적화된 긴 형식의 콘텐츠를 제작하는 데 도움이 됩니다. 콘텐츠 요약과 KPI가 지침으로 포함되어 있습니다. 사용자는 AI의 추천에 따라 기본 제공 편집기를 사용하여 사본을 추가로 편집할 수 있습니다.

주요 기능

  • 분류
  • SERP 순위 추적
  • 데이터 시각화
  • 경쟁사 분석

가격

  • 무료 버전 사용 가능
  • 표준 요금제: 월 $149
  • 팀 요금제: 월 $399
  • 프리미엄 요금제: 맞춤 견적

평점: 4.6/5

MarketMuse는 이메일, 판매 카피, 랜딩 페이지, 에세이 등 최적화된 긴 형식의 콘텐츠를 제작하는 데 도움이 됩니다.

10. 옵티무브

옵티무브의 챗봇 어시스턴트인 옵티봇은 제공되는 모든 소비자 데이터를 검색하고 평가하여 유용한 인사이트를 제공합니다. 이 AI 어시스턴트는 손실에 따라 특정 마케팅 이니셔티브를 중단하도록 조언하거나 과도한 회사 커뮤니케이션을 수신했을 가능성이 있는 고객에게 경고를 보낼 수 있습니다.

주요 기능

  • 캠페인 인사이트
  • 하이퍼 세분화
  • A/B 테스트
  • 멀티채널 추적

가격

맞춤 견적

평점: 4.6/5

옵티무브의 챗봇 어시스턴트인 옵티봇은 제공되는 모든 소비자 데이터를 검색하고 평가하여 유용한 인사이트를 제공합니다.

11. 허브스팟 AI

Hubspot의 AI 기능을 사용하면 조직을 지원할 뿐만 아니라 고객 서비스에도 도움이 되는 콘텐츠를 만들 수 있습니다. 고품질 콘텐츠를 개발하기 위해 모든 HubSpot 도구와 통합됩니다. AI 직원 팀은 별도의 애플리케이션 사이를 오갈 필요 없이 Hubspot의 대화 인텔리전스 및 기타 도구를 사용하여 블로그 기사, 랜딩 페이지 등을 작성할 수 있습니다.

주요 기능

  • 캠페인 어시스턴트 및 콘텐츠 어시스턴트를 사용하여 이메일 및 소셜 미디어 카피에서 메타 설명 및 소셜 미디어 캡션에 이르기까지 서면 콘텐츠를 작성합니다.
  • 독립형 앱으로 사용할 수 있는 GPT 기반의 스마트 CRM 챗봇 어시스턴트 ChatSpot

가격

  • 무료 데모 사용 가능
  • 마케팅 허브: 무료
  • 마케팅 허브 스타터: 월 $18부터 시작
  • 마케팅 허브 프로: 월 $800부터 시작

평점: 4.4/5

Hubspot의 AI 기능을 사용하면 조직을 지원할 뿐만 아니라 고객 서비스에도 도움이 되는 콘텐츠를 만들 수 있습니다.

마케팅을 위한 최고의 AI 도구를 선택하는 방법은?

마케팅에 가장 적합한 AI 도구를 선택하려면 마케팅 목표를 정의하는 것부터 시작하세요. 고객 인게이지먼트 개선, 광고 캠페인 최적화, 데이터 분석 강화 등 AI 도구를 통해 달성하고자 하는 목표를 결정하세요. 명확한 목표를 세우는 것은 도구 선택을 안내하는 데 필수적입니다.

타겟 고객 이해

타겟 오디언스의 특성과 선호도를 고려하세요. 잠재고객의 행동과 니즈에 따라 B2B 마케팅에 더 적합한 AI 도구가 다를 수 있습니다. 타겟 고객에 대한 이해는 타겟 시장에 맞게 도구를 조정하는 데 있어 매우 중요합니다.

예산 평가

AI 도구에 대한 예산을 결정하세요. 일부 도구는 무료이거나 기본 버전을 제공하는 반면, 다른 도구는 구독 또는 대규모 투자가 필요합니다. 도구 비용과 마케팅 활동의 잠재적 투자 수익률 간의 균형을 맞추는 것이 중요합니다.

연구 옵션

철저한 조사를 통해 마케팅에 사용할 수 있는 AI 도구를 탐색하세요. 성공 사례가 입증된 평판이 좋은 도구를 찾아보세요. 리뷰, 사례 연구 및 사용자 피드백을 읽으면 그 효과를 평가하는 데 도움이 됩니다.

호환성 및 통합

선택한 AI 도구가 CRM, 이메일 마케팅 플랫폼, 분석 도구 등 기존 마케팅 스택과 원활하게 통합될 수 있는지 확인하세요. 호환성은 마케팅 운영의 효율성을 위해 매우 중요합니다.

특징 및 기능

각 AI 도구의 구체적인 특징과 기능을 평가합니다. 데이터 분석, 개인화, 자동화 및 보고와 같은 요소를 고려하세요. 선택 사항은 구현하려는 마케팅 전략과 일치해야 합니다.

평가판 기간

가능하면 AI 도구 제공업체에서 제공하는 체험 기간이나 데모를 활용하세요. 이를 통해 도구를 테스트하고 실제 시나리오에서 얼마나 잘 작동하는지 확인한 후 약정할 수 있습니다.

사용자 친화성

AI 도구의 사용자 친화성을 평가합니다. 마케팅 팀이 직관적이고 쉽게 사용할 수 있어야 합니다. 복잡한 도구는 더 많은 교육과 지원이 필요할 수 있으며, 이는 운영 효율성에 영향을 미칠 수 있습니다.

데이터 보안 및 규정 준수

특히 민감한 고객 데이터를 취급하는 경우 AI 도구가 데이터 보안 및 개인정보 보호 규정을 준수하는지 확인합니다. 고객과의 신뢰를 유지하려면 GDPR, CCPA 또는 기타 관련 법률을 준수하는 것이 필수적입니다.

지원 및 교육

도구 제공업체가 제공하는 지원 및 교육 수준을 고려하세요. 튜토리얼, 문서 및 신속한 고객 지원에 대한 액세스는 원활한 도입 프로세스에 매우 유용할 수 있습니다.

확장성

비즈니스에 맞춰 확장할 수 있는 AI 도구를 선택하세요. 마케팅 요구사항이 변화할 수 있으므로 함께 성장할 수 있는 도구를 사용하면 잦은 도구 교체를 피하는 데 유리합니다.

측정 결과

AI 도구를 구현한 후에는 그 성과와 마케팅 활동에 미치는 영향을 면밀히 모니터링하세요. 메트릭과 핵심 성과 지표(KPI)를 활용하여 효과를 측정하고 마케팅 목표를 달성하기 위해 필요에 따라 조정하세요.

더 읽어보기: 2023년 SEO를 위한 상위 10가지 AI 도구 [With Latest Features]

AI가 수익 마케팅에 중요한 이유는 무엇인가요?

AI는 보다 타겟팅되고 효율적이며 고객 중심적인 방식으로 수익 마케팅을 혁신하고 있습니다:

더 스마트한 타겟팅 광고

AI는 빅데이터를 활용하여 타겟에 맞는 광고를 제작합니다. 고객 패턴과 선호도를 이해하면 더 많은 공감을 불러일으키는 캠페인을 만들어 전환율을 높이고 매출을 높일 수 있습니다.

정교한 검색 전략

AI는 검색 전술을 개선하여 마케팅 활동이 중요한 곳에 집중될 수 있도록 합니다. 이러한 정확성은 마케팅 비용을 절감할 뿐만 아니라 수익 마케팅의 초석인 더 높은 수익을 창출합니다.

초개인화

개인의 취향에 맞게 콘텐츠를 맞춤화하는 AI의 능력은 참여도와 충성도를 높입니다. 이러한 개인적인 접촉은 장기적인 고객 관계를 구축하는 데 핵심적인 역할을 하며, 지속적인 매출 성장의 중추적인 역할을 합니다.

자동화된 고객 서비스

챗봇과 AI 기반 도구는 고객과의 상호작용을 간소화하여 전반적인 경험을 향상시킵니다. 이러한 효율성은 고객을 유지할 뿐만 아니라 구매 결정에 긍정적인 영향을 미쳐 매출을 촉진합니다.

고객 여정 개선

  • 인지도 단계에서는 AI가 상세한 고객 페르소나를 구축하여 참여 가능성이 가장 높은 고객을 타겟팅합니다.
  • 고려 단계에서는 AI 기반 타겟팅 광고를 통해 고객이 관련 상품을 더 쉽게 발견할 수 있습니다.
  • 구매 단계에서는 AI가 개인화된 상향 판매와 교차 판매를 제안하여 평균 주문 가치를 높입니다.
  • 구매 후 리텐션 단계에서는 AI가 맞춤형 오퍼를 생성하여 재구매를 유도합니다.
  • 또한 AI는 리뷰와 추천을 위한 홍보 활동을 개인화하여 만족한 고객을 브랜드 옹호자로 전환합니다.

고객 여정 전반에 걸쳐 AI를 통합하면 기업은 신규 고객을 유치하고 기존 관계를 강화하여 안정적인 수익원을 확보하고 마케팅 이니셔티브에 대한 ROI를 높일 수 있습니다.

마케팅을 위한 AI 도구로 경쟁 우위 확보

콘텐츠 생성부터 분석 중앙 집중화, 소셜 미디어 전문성, 대화형 마케팅, 브랜드 언어 최적화에 이르기까지 이러한 도구는 비즈니스 마케팅에서 AI를 재정의합니다. 비즈니스에 AI를 사용하는 것은 단순한 트렌드가 아니라 혁명이라는 점을 기억하세요. 끝없이 펼쳐지는 이 분야에서 창의력을 발휘해 보세요!

자세히 보기: 2023년 상위 6대 AI 도구 디렉토리

RAG API란 무엇이며 어떻게 작동하나요?

RAG API is a framework with the commitment to enhance generative AI by guaranteeing that its outputs are current, aligned with the given input, and, crucially, accurate.

데이터를 효율적으로 검색하고 처리하는 능력은 오늘날의 기술 집약적인 시대에 판도를 바꾸고 있습니다. RAG API가 데이터 처리를 어떻게 재정의하는지 살펴보겠습니다. 이 혁신적인 접근 방식은 대규모 언어 모델(LLM)의 뛰어난 성능과 검색 기반 기술을 결합하여 데이터 검색을 혁신적으로 개선합니다.

대규모 언어 모델(LLM)이란 무엇인가요?

대규모 언어 모델(LLM)은 검색 증강 세대(RAG)의 기반이 되는 고급 인공 지능 시스템입니다. LLM은 GPT(생성형 사전 학습 트랜스포머)와 같이 매우 정교한 언어 기반 AI 모델입니다. 광범위한 데이터 세트에 대한 학습을 통해 사람과 유사한 텍스트를 이해하고 생성할 수 있어 다양한 애플리케이션에 없어서는 안 될 필수 요소입니다.

RAG API의 맥락에서 이러한 LLM은 데이터 검색, 처리 및 생성을 향상시키는 데 중심적인 역할을 하며, 데이터 상호 작용을 최적화하는 다재다능하고 강력한 도구로 활용됩니다.

RAG API의 개념을 간단히 설명해 드리겠습니다.

RAG란 무엇인가요?

RAG(검색 증강 생성)는 제너레이티브 AI를 최적화하기 위해 설계된 프레임워크입니다. AI가 생성하는 응답이 입력 프롬프트와 관련성이 높을 뿐만 아니라 정확하도록 하는 것이 주요 목표입니다. 정확성에 대한 이러한 초점은 RAG API 기능의 핵심 측면입니다. GPT와 같은 대규모 언어 모델(LLM)이라는 초스마트 컴퓨터 프로그램을 사용하여 데이터를 처리하는 획기적인 방식입니다.

이러한 LLM은 앞의 단어를 이해하여 문장에서 다음에 나올 단어를 예측할 수 있는 디지털 마법사와 같습니다. 수많은 텍스트를 통해 학습했기 때문에 매우 인간적으로 들리는 방식으로 글을 쓸 수 있습니다. RAG를 사용하면 이러한 디지털 마법사를 사용하여 맞춤형 방식으로 데이터를 찾고 작업할 수 있습니다. 데이터에 대해 모든 것을 알고 있는 똑똑한 친구가 도와주는 것과 같습니다!

기본적으로 RAG는 시맨틱 검색을 사용하여 검색한 데이터를 참조를 위해 LLM에 대한 쿼리에 삽입합니다. 이 글에서 이러한 용어에 대해 더 자세히 살펴보겠습니다.

RAG API 프로세스

RAG에 대해 자세히 알아보려면 Cohere의 이 종합 문서를 확인하세요.

RAG와 미세 조정: 차이점은 무엇인가요?

측면 RAG API 미세 조정
접근 방식 데이터베이스의 컨텍스트로 기존 LLM을 보강합니다. 특정 업무에 특화된 LLM
컴퓨팅 리소스 더 적은 컴퓨팅 리소스 필요 상당한 컴퓨팅 리소스가 필요함
데이터 요구 사항 소규모 데이터 세트에 적합 방대한 양의 데이터 필요
모델 특이성 모델에 구애받지 않고 필요에 따라 모델 전환 가능 모델에 따라 다르며 일반적으로 LLM을 전환하는 것은 매우 지루한 작업입니다.
도메인 적응성 도메인에 구애받지 않고 다양한 애플리케이션에서 활용 가능 다른 도메인에 맞게 조정해야 할 수 있습니다.
환각 감소 환각을 효과적으로 감소시킵니다. 세심한 튜닝 없이는 더 많은 환각을 경험할 수 있습니다.
일반적인 사용 사례 QA(질문-응답) 시스템, 다양한 애플리케이션에 이상적 의료 문서 분석과 같은 전문 작업 등

벡터 데이터베이스의 역할

벡터 데이터베이스는 검색 증강 생성(RAG) 및 대규모 언어 모델(LLM)에서 중추적인 역할을 합니다. 데이터 검색, 컨텍스트 증강 및 이러한 시스템의 전반적인 성능을 향상시키는 중추적인 역할을 합니다. 다음은 벡터 데이터베이스의 주요 역할에 대한 설명입니다:

구조화된 데이터베이스의 한계 극복

기존의 구조화된 데이터베이스는 경직되고 사전 정의된 특성으로 인해 RAG API에서 사용할 때 종종 부족합니다. 컨텍스트 정보를 LLM에 제공하는 데 필요한 유연하고 동적인 요구 사항을 처리하는 데 어려움을 겪고 있습니다. 벡터 데이터베이스는 이러한 한계를 해결하기 위해 도입되었습니다.

벡터 형식의 효율적인 데이터 저장

벡터 데이터베이스는 숫자 벡터를 사용하여 데이터를 저장하고 관리하는 데 탁월합니다. 이 형식을 사용하면 다양한 다차원 데이터 표현이 가능합니다. 이러한 벡터를 효율적으로 처리하여 고급 데이터 검색을 용이하게 할 수 있습니다.

데이터 관련성 및 성능

RAG 시스템은 벡터 데이터베이스를 활용하여 관련 컨텍스트 정보에 빠르게 액세스하고 검색할 수 있습니다. 이러한 효율적인 검색은 LLM이 응답을 생성하는 속도와 정확성을 향상시키는 데 매우 중요합니다.

클러스터링 및 다차원 분석

벡터는 다차원 공간에서 데이터 포인트를 클러스터링하고 분석할 수 있습니다. 이 기능은 컨텍스트 데이터를 그룹화하여 관련성을 파악하고 일관성 있게 LLM에 제시할 수 있도록 하는 RAG에 매우 유용합니다. 이를 통해 이해도가 향상되고 상황에 맞는 응답을 생성할 수 있습니다.

시맨틱 검색이란 무엇인가요?

시맨틱 검색은 검색 증강 생성(RAG) API와 대규모 언어 모델(LLM)의 초석입니다. 정보에 액세스하고 이해하는 방식에 혁명을 일으킨다는 점에서 그 중요성은 아무리 강조해도 지나치지 않습니다.

기존 데이터베이스 그 이상

시맨틱 검색은 동적이고 유연한 데이터 요구 사항을 처리하는 데 어려움을 겪는 구조화된 데이터베이스의 한계를 뛰어넘습니다. 대신 벡터 데이터베이스를 활용하여 RAG 및 LLM의 성공에 필수적인 보다 다양하고 적응력 있는 데이터 관리가 가능합니다.

다차원 분석

시맨틱 검색의 주요 강점 중 하나는 숫자 벡터 형태의 데이터를 이해하는 능력입니다. 이러한 다차원 분석은 컨텍스트를 기반으로 데이터 관계에 대한 이해를 높여주므로 보다 일관성 있고 컨텍스트를 인식하는 콘텐츠를 생성할 수 있습니다.

효율적인 데이터 검색

데이터 검색, 특히 RAG API 시스템의 실시간 응답 생성에 있어 효율성은 매우 중요합니다. 시맨틱 검색은 데이터 액세스를 최적화하여 LLM을 사용한 응답 생성의 속도와 정확성을 크게 향상시킵니다. 의료 분석부터 복잡한 쿼리에 이르기까지 다양한 애플리케이션에 적용할 수 있는 다목적 솔루션으로, AI 생성 콘텐츠의 부정확성을 줄여줍니다.

RAG API란 무엇인가요?

RAG API를 서비스로서의 RAG라고 생각하세요. RAG 시스템의 모든 기본 사항을 하나의 패키지로 통합하여 조직에서 편리하게 RAG 시스템을 도입할 수 있도록 도와줍니다. RAG API를 사용하면 RAG 시스템의 주요 요소에 집중하고 나머지는 API가 처리하도록 맡길 수 있습니다.

RAG API 쿼리의 3가지 요소는 무엇인가요?

RAG 쿼리는 세 가지 중요한 요소로 분석할 수 있습니다: 컨텍스트, 역할, 사용자 쿼리입니다. 이러한 구성 요소는 RAG 시스템을 구동하는 빌딩 블록으로, 각각 콘텐츠 생성 프로세스에서 중요한 역할을 합니다.

검색 증강 생성(RAG)의 복잡성에 대해 자세히 살펴보면, RAG 쿼리는 세 가지 중요한 요소로 분해할 수 있습니다: 컨텍스트, 역할 및 사용자 쿼리. 이러한 구성 요소는 RAG 시스템을 구동하는 빌딩 블록으로, 각각 콘텐츠 생성 프로세스에서 중요한 역할을 합니다.

The 컨텍스트 는 필수 정보가 있는 지식 저장소 역할을 하는 RAG API 쿼리의 기초를 형성합니다. 기존 지식창고 데이터에 시맨틱 검색을 활용하면 사용자 쿼리와 관련된 동적 컨텍스트를 얻을 수 있습니다.

The 역할 는 RAG 시스템의 목적을 정의하여 특정 작업을 수행하도록 지시합니다. 이 모델은 요구 사항에 맞는 콘텐츠를 생성하고, 설명을 제공하고, 쿼리에 답변하거나, 정보를 요약할 수 있도록 모델을 안내합니다.

The 사용자 쿼리 는 사용자의 입력으로, RAG 프로세스의 시작을 알리는 신호입니다. 이는 사용자와 시스템의 상호 작용을 나타내며 사용자의 정보 요구 사항을 전달합니다.

RAG API 내의 데이터 검색 프로세스는 시맨틱 검색을 통해 효율적으로 이루어집니다. 이 접근 방식을 사용하면 다차원 데이터 분석이 가능하므로 컨텍스트에 기반한 데이터 관계에 대한 이해도가 향상됩니다. 간단히 말해, 시맨틱 검색을 통해 RAG 쿼리와 데이터 검색의 구조를 파악하면 이 기술의 잠재력을 발휘하여 효율적인 지식 액세스와 문맥 인식 콘텐츠 생성을 촉진할 수 있습니다.

프롬프트의 연관성을 개선하는 방법은 무엇인가요?

프롬프트 엔지니어링은 특정 도메인에 맥락에 맞는 응답을 생성하기 위해 RAG 내에서 대규모 언어 모델(LLM)을 조정하는 데 중추적인 역할을 합니다.

검색 증강 생성(RAG)의 컨텍스트 활용 능력은 매우 강력하지만, 컨텍스트를 제공하는 것만으로는 고품질 응답을 보장하기에 충분하지 않습니다. 여기서 프롬프트의 개념이 등장합니다.

잘 만들어진 프롬프트는 LLM의 로드맵 역할을 하여 원하는 응답으로 안내합니다. 일반적으로 다음 요소가 포함됩니다:

컨텍스트 관련성 잠금 해제

검색 증강 생성(RAG)은 컨텍스트를 활용할 수 있는 강력한 도구입니다. 그러나 단순한 컨텍스트만으로는 고품질 응답을 보장하기에 충분하지 않을 수 있습니다. 프롬프트는 특정 도메인에 맞는 응답을 생성하기 위해 RAG 내에서 대규모 언어 모델(LLM)을 조정하는 데 중요한 역할을 합니다.

사용 사례에 맞는 봇 역할을 구축하기 위한 로드맵

잘 구조화된 프롬프트는 로드맵 역할을 하여 LLM이 원하는 응답을 하도록 안내합니다. 일반적으로 다양한 요소로 구성됩니다:

봇의 정체성

봇의 이름을 언급하면 대화 내에서 봇의 정체성을 확립하여 대화를 더욱 친밀하게 만들 수 있습니다.

작업 정의

LLM이 수행해야 하는 작업 또는 기능을 명확하게 정의하면 정보 제공, 질문 답변 또는 기타 특정 작업 등 사용자의 요구 사항을 충족할 수 있습니다.

톤 사양

원하는 어조나 응답 스타일을 지정하면 공식적이든, 친근하든, 유익한 정보를 제공하든 상호 작용에 적합한 분위기를 조성할 수 있습니다.

기타 지침

이 카테고리에는 링크 및 이미지 추가, 인사말 제공, 특정 데이터 수집 등 다양한 지시문이 포함될 수 있습니다.

컨텍스트 관련성 만들기

프롬프트를 신중하게 작성하는 것은 RAG와 LLM의 시너지 효과를 통해 문맥을 인식하고 사용자의 요구 사항과 관련성이 높은 응답을 제공하여 전반적인 사용자 경험을 향상시키기 위한 전략적 접근 방식입니다.

왜 코디의 RAG API를 선택해야 하나요?

이제 RAG의 중요성과 핵심 구성 요소에 대해 알아봤으니 이제 RAG를 실현하기 위한 최고의 파트너인 코디를 소개해드리겠습니다. Cody는 효율적인 데이터 검색 및 처리에 필요한 모든 필수 요소를 결합한 포괄적인 RAG API를 제공하므로 RAG 여정을 위한 최고의 선택이 될 것입니다.

모델 불가지론

최신 AI 트렌드를 따라잡기 위해 기종을 변경할 필요가 없습니다. Cody의 RAG API를 사용하면 추가 비용 없이 대규모 언어 모델 간에 즉석에서 쉽게 전환할 수 있습니다.

탁월한 활용성

Cody의 RAG API는 다양한 파일 형식을 효율적으로 처리하고 텍스트 계층 구조를 인식하여 최적의 데이터 구성을 지원하는 등 놀라운 다재다능함을 보여줍니다.

사용자 지정 청킹 알고리즘

메타데이터를 포함한 포괄적인 데이터 세분화를 지원하는 고급 청킹 알고리즘을 통해 탁월한 데이터 관리를 보장하는 것이 가장 큰 특징입니다.

비교할 수 없는 속도

인덱스 수에 관계없이 선형 쿼리 시간으로 대규모의 데이터 검색을 초고속으로 보장합니다. 데이터 요구 사항에 대한 신속한 결과를 보장합니다.

원활한 통합 및 지원

Cody는 널리 사용되는 플랫폼과의 원활한 통합과 포괄적인 지원을 제공하여 RAG 환경을 개선하고 효율적인 데이터 검색 및 처리를 위한 최고의 선택으로 입지를 굳혔습니다. 기술적 전문 지식이 전혀 필요하지 않은 직관적인 사용자 인터페이스를 보장하여 모든 기술 수준의 개인이 접근하기 쉽고 사용자 친화적이며 데이터 검색 및 처리 환경을 더욱 간소화합니다.

데이터 상호 작용을 향상시키는 RAG API 기능

검색 증강 생성(RAG)에 대한 탐구 과정에서 대규모 언어 모델(LLM)을 시맨틱 검색, 벡터 데이터베이스, 프롬프트와 통합하여 데이터 검색 및 처리를 향상시키는 다용도 솔루션을 발견했습니다.

모델에 구애받지 않고 도메인에 구애받지 않는 RAG는 다양한 애플리케이션에 걸쳐 엄청난 잠재력을 가지고 있습니다. Cody의 RAG API는 유연한 파일 처리, 고급 청킹, 빠른 데이터 검색, 원활한 통합과 같은 기능을 제공하여 이러한 약속을 실현합니다. 이 조합은 데이터 참여에 혁명을 일으킬 준비가 되어 있습니다.

이러한 데이터 혁신을 받아들일 준비가 되셨나요? Cody AI로 데이터 상호 작용을 재정의하고 데이터 처리의 새로운 시대를 개척하세요.

자주 묻는 질문

1. RAG와 대규모 언어 모델(LLM)의 차이점은 무엇인가요?

RAG API(검색 증강 생성 API)와 LLM(대규모 언어 모델)은 함께 작동합니다.

RAG API는 검색 메커니즘과 생성 언어 모델(LLM)이라는 두 가지 중요한 요소를 결합한 애플리케이션 프로그래밍 인터페이스입니다. 주요 목적은 데이터 검색 및 콘텐츠 생성을 개선하여 상황 인식 응답에 중점을 두는 것입니다. RAG API는 종종 질문 답변, 콘텐츠 생성, 텍스트 요약과 같은 특정 작업에 적용됩니다. 사용자 쿼리에 대해 상황에 맞는 응답을 제공하도록 설계되었습니다.

반면 LLM(대규모 언어 모델)은 GPT(생성형 사전 학습 트랜스포머)와 같은 더 광범위한 언어 모델 범주를 구성합니다. 이러한 모델은 광범위한 데이터 세트에 대해 사전 학습되어 다양한 자연어 처리 작업을 위해 사람과 유사한 텍스트를 생성할 수 있습니다. 검색 및 생성을 처리할 수 있을 뿐만 아니라 번역, 감성 분석, 텍스트 분류 등 다양한 애플리케이션으로 확장할 수 있는 범용성을 갖추고 있습니다.

본질적으로 RAG API는 특정 애플리케이션에서 컨텍스트 인식 응답을 위해 검색과 생성을 결합한 전문 도구입니다. 반면 LLM은 다양한 자연어 처리 작업의 기반이 되는 기본 언어 모델로, 검색 및 생성 외에도 더 광범위한 잠재적 응용 분야를 제공합니다.

2. RAG와 LLM – 무엇이 더 낫고 그 이유는 무엇인가요?

RAG API와 LLM 중 어떤 것을 선택할지는 특정 요구 사항과 수행하려는 작업의 성격에 따라 달라집니다. 다음은 상황에 따라 어떤 것이 더 나은지 결정하는 데 도움이 되는 고려 사항의 분석입니다:

RAG API If를 선택합니다:

상황 인식 응답이 필요합니다

RAG API는 상황에 맞는 응답을 제공하는 데 탁월합니다. 질문에 답하거나, 콘텐츠를 요약하거나, 상황에 맞는 응답을 생성하는 작업이라면 RAG API가 적합합니다.

구체적인 사용 사례가 있는 경우

애플리케이션이나 서비스에 컨텍스트 인식 콘텐츠가 필요한 사용 사례가 잘 정의되어 있는 경우 RAG API가 더 적합할 수 있습니다. 컨텍스트가 중요한 역할을 하는 애플리케이션을 위해 특별히 제작되었습니다.

세밀한 제어가 필요한 경우

RAG API를 사용하면 미세 조정 및 사용자 정의가 가능하므로 프로젝트에 특정 요구 사항이나 제약이 있는 경우 유용할 수 있습니다.

LLM을 선택합니다:

다목적성이 필요한 경우

LLM은 GPT 모델과 마찬가지로 매우 다재다능하며 다양한 자연어 처리 작업을 처리할 수 있습니다. 여러 애플리케이션에 걸쳐 요구 사항이 있는 경우 LLM은 유연성을 제공합니다.

맞춤형 솔루션을 구축하려는 경우

맞춤형 자연어 처리 솔루션을 구축하여 특정 사용 사례에 맞게 미세 조정하거나 기존 워크플로에 통합할 수 있습니다.

사전 언어 이해 훈련이 필요합니다

LLM은 방대한 데이터 세트에 대해 사전 학습된 상태로 제공되므로 언어에 대한 이해도가 높습니다. 대량의 비정형 텍스트 데이터로 작업해야 하는 경우 LLM은 귀중한 자산이 될 수 있습니다.

3. 자연어 처리에서 GPT 모델과 같은 LLM이 인기 있는 이유는 무엇일까요?

LLM은 다양한 언어 작업에서 탁월한 성능을 발휘하기 때문에 널리 주목을 받고 있습니다. LLM은 대규모 데이터 세트에 대해 학습됩니다. 그 결과 모든 언어의 뉘앙스를 이해하여 일관되고 문맥에 적합하며 문법적으로 정확한 텍스트를 이해하고 생산할 수 있습니다. 또한 사전 학습된 LLM의 접근성 덕분에 더 많은 사람들이 AI 기반 자연어 이해 및 생성에 액세스할 수 있게 되었습니다.

4. LLM의 일반적인 활용 분야에는 어떤 것이 있나요?

LLM은 다음과 같은 광범위한 언어 작업에서 응용 분야를 찾습니다:

자연어 이해

LLM은 감성 분석, 명명된 엔티티 인식, 질문 답변과 같은 작업에서 탁월한 성능을 발휘합니다. 강력한 언어 이해 기능을 갖추고 있어 텍스트 데이터에서 인사이트를 추출하는 데 유용합니다.

텍스트 생성

챗봇 및 콘텐츠 생성과 같은 애플리케이션을 위해 사람과 유사한 텍스트를 생성하여 일관성 있고 맥락에 맞는 응답을 제공할 수 있습니다.

기계 번역

기계 번역의 품질이 크게 향상되었습니다. 놀라운 수준의 정확성과 유창함으로 언어 간 텍스트를 번역할 수 있습니다.

콘텐츠 요약

이들은 긴 문서나 녹취록을 간결하게 요약하는 데 능숙하여 방대한 콘텐츠에서 핵심 정보를 효율적으로 추출할 수 있는 방법을 제공합니다.

5. 새로운 데이터와 진화하는 작업으로 어떻게 LLM을 최신 상태로 유지할 수 있을까요?

LLM의 최신성과 유효성을 유지하는 것은 매우 중요합니다. 새로운 데이터와 진화하는 작업으로 계속 업데이트하기 위해 몇 가지 전략을 사용합니다:

데이터 증강

오래된 정보로 인한 성능 저하를 방지하려면 지속적인 데이터 보강이 필수적입니다. 새롭고 관련성 높은 정보로 데이터 저장소를 보강하면 모델의 정확성과 관련성을 유지하는 데 도움이 됩니다.

재교육

새로운 데이터로 LLM을 주기적으로 재교육하는 것은 일반적인 관행입니다. 최근 데이터를 기반으로 모델을 미세 조정하면 변화하는 트렌드에 적응하고 최신 상태를 유지할 수 있습니다.

능동적 학습

능동적 학습 기법을 구현하는 것도 또 다른 접근 방식입니다. 여기에는 모델이 불확실하거나 오류가 발생할 가능성이 있는 인스턴스를 식별하고 이러한 인스턴스에 대한 주석을 수집하는 작업이 포함됩니다. 이러한 주석은 모델의 성능을 개선하고 정확도를 유지하는 데 도움이 됩니다.

셀러를 위한 아마존의 최신 생성 AI 도구는 무엇을 제공하나요?

How Does Amazon AI for Sellers Work?

이커머스 업계에서 아마존의 최근 움직임은 연례 셀러 컨퍼런스에서 선보인 셀러를 위한 제너레이티브 AI입니다,
아마존 액셀러레이트 2023
. 새로운 AI 기능 덕분에 매력적이고 유용한 제품 목록을 만드는 것이 훨씬 더 간단해졌습니다! 이 블로그에서 그 내용을 자세히 알아보세요.

셀러를 위한 아마존의 제너레이티브 AI

Amazon 는 판매자를 위한 제너레이티브 AI를 도입하여 판매 게임을 강화했습니다. 새로 도입된 AI 기능 덕분에 아마존 셀러는 상세하고 매력적인 상품 설명, 제목, 리스팅 세부 정보를 더 쉽게 작성할 수 있습니다.

네, 맞습니다! 길고 복잡한 프로세스가 필요 없습니다. 판매자는 더 이상 제품마다 다양한 정보를 입력할 필요가 없습니다. 새 제품을 훨씬 더 빠르고 간편하게 추가할 수 있습니다. 이렇게 하면 현재 리스팅을 개선하여 구매자가 구매 시 더욱 안심하고 구매할 수 있습니다.


출처

“새로운 생성형 AI 모델을 통해 품질, 성능, 효율성을 획기적으로 개선하면서 전례 없는 규모로 제품 지식을 추론, 개선, 보강할 수 있습니다. 유니티의 모델은 다양한 정보 소스, 잠재 지식, 논리적 추론을 통해 제품 정보를 추론하는 방법을 학습합니다. 예를 들어, 사양에 지름이 나와 있으면 테이블이 둥글다고 추론하거나 이미지에서 셔츠의 칼라 스타일을 추론할 수 있습니다.”라고 설명합니다.

로버트 테키엘라


아마존 셀렉션 및 카탈로그 시스템 부문 부사장

셀러를 위한 아마존의 제너레이티브 AI는 정확히 어떤 기능을 하나요?

아마존의 새로운 AI 기능이 셀러에게 가져다주는 이점은 다음과 같습니다:

  • 셀러는 몇 단어 또는 문장으로 품목에 대한 간략한 요약만 제출하면 아마존에서 검토를 위한 고품질 텍스트를 생성합니다.
  • 판매자가 원하는 경우 판매자가 편집할 수 있습니다.
  • 자동으로 생성된 콘텐츠를 아마존 카탈로그에 제출하기만 하면 됩니다.

결과는? 판매자를 위한 고품질 리스팅. 그리고 그거 아세요? 쇼핑객은 구매하려는 제품을 더 쉽게 찾을 수 있습니다.

셀러용 Amazon AI는 어떻게 작동하나요?

아마존은 머신 러닝과 딥 러닝을 사용하여 상품 정보를 자동으로 추출하고 개선했습니다. 보다 구체적으로, 다음을 사용합니다. 대규모 언어 모델(LLM) 를 사용하여 보다 철저한 제품 설명을 작성할 수 있습니다. 하지만 왜 LLM일까요? 이러한 머신 러닝 모델은 방대한 양의 데이터로 학습됩니다. 따라서 텍스트 및 기타 자료를 감지, 요약, 번역, 예측, 생성할 수 있습니다.

이 미국 이커머스 대기업은 LLM을 가르치는 데 어떤 정보를 사용했는지 정확히 밝히지 않았습니다. 그러나 회사가 자체 상장 데이터를 사용하고 있는 것으로 보입니다.

그러나 생성형 AI 모델을 대규모로 사용하면 사실이 아닌 잘못된 정보를 생성하는 경향과 사람이 확인하지 않으면 알아채지 못할 수 있는 기타 오류가 발생할 수 있다는 우려가 제기됩니다.

그럼에도 불구하고 지난 몇 달 동안 많은 셀러가 Amazon의 최신 AI 제품을 테스트했으며, 예비 피드백에 따르면 대부분의 셀러가 AI가 생성한 리스팅 콘텐츠를 적극적으로 사용하고 있는 것으로 나타났습니다.

결론

아마존은 셀러가 수익성 있는 비즈니스를 시작하고 성장시키는 데 도움을 주는 방법 중 하나인 리스팅 크리에이터가 AI를 더 쉽게 사용할 수 있도록 지원하기 시작했습니다. 이는 판매자 경험을 개선하고 더 성공적인 판매자를 지원하기 위해 AI를 활용하는 방법의 시작에 불과합니다.

자세히 알아보기: 메타의 AI 스튜디오

미스트랄 AI란: 오픈 소스 모델

The French startup Mistral AI has introduced the GenAI model. Is it the next best AI business assistant?

AI 분야를 혁신하기 위한 큰 발걸음으로 프랑스 스타트업 미스트랄 AI는 GenAI 비즈니스 어시스턴트를 출시했습니다. 메타나 OpenAI와 같은 업계 거물들의 아성을 무너뜨릴 준비가 되어 있습니다. 이 블로그에서는 인공지능의 흥미로운 발전이 가져올 수 있는 잠재적 의미를 살펴봅니다.

미스트랄 AI의 놀라운 1억 1,300만 달러 가치 평가: 화제가 되는 이유는?

파리에 본사를 둔 AI 스타트업인 미스트랄 AI는 2억 6,000만 달러의 가치를 인정받아 1억 1,300만 달러의 투자금을 유치하며 많은 사람들의 이목을 끌었습니다. 이 회사는 설립한 지 3개월밖에 되지 않았고 직원 수는 20명이 채 되지 않았습니다. 그래서 당시에는 밸류에이션 게임처럼 보였습니다.

몇 달 후, 미스트랄 AI는 자체 오픈소스 대규모 언어 모델인 미스트랄 7B를 출시했습니다. 미스트랄 7B보다 두 배 큰 라마 2 13B 모델보다 모든 매개변수에서 더 우수합니다. 미스트랄 AI는 다음 항목에서도 라마-1 34B보다 우수합니다.
많은 벤치마크
.

미스트랄 7B와 자이언츠: 이 AI 오픈소스의 뛰어난 성능

이 경량 AI 모델은 기존의 헤비급 AI 모델과 경쟁하고 있습니다. 그리고 물러서지 않습니다!

적은 비용과 리소스로 지금까지 보여준 미스트랄 AI의 성능은 막대한 가치에 걸맞은 가치가 있음을 입증했습니다. 다음은 미스트랄 AI가 성공할 수 있었던 주요 이유 중 일부입니다:

  • 미스트랄 AI가 1세대 AI 모델을 훈련하는 데 사용하는 훈련 방법이 더 효율적입니다.
  • 미스트랄 AI의 학습 방식은 기존 방식보다 구현 비용이 최소 2배 이상 저렴합니다.
  • 오픈 소스의 특성상 유연성이 뛰어납니다.
  • 오픈 소스 모델은 미세 조정이 용이하다는 점이 가장 큰 장점입니다.

미스트랄 AI는 이러한 모델을 누구나 사용할 수 있도록 개방했습니다. 그렇다면 이 프랑스 스타트업이 더 크고, 더 좋고, 더 복잡한 모델을 내놓을 것이라는 뜻일까요? 네, 맞아요!

지금까지 전 세계의 AI 애호가들은 양질의 AI 비즈니스 어시스턴트 및 기반 모델을 개발하기 위해 Meta에 의존해 왔습니다. 따라서 미스트랄 AI의 GenAI 모델은 그들에게 좋은 일이었습니다.

새로운 AI 플레이어를 위한 길 닦기

AI 비서 분야는 대부분의 플레이어가 미국 출신으로 과점 상태입니다. 하지만 지금까지 다른 플레이어의 발목을 잡았던 것은 무엇이었을까요? 그 이유는 진입 장벽이 높기 때문입니다. 이러한 잠재적인 인공지능 직원 거인들과 경쟁하려면 어렵게 만든 기술과 막대한 투자가 필요합니다.

수백만 달러의 자금과 희귀한 팀으로 구성된 미스트랄의 진입은 이 분야에 지각 변동을 일으킬 수 있습니다. 실제로 미스트랄은 2024년까지 LLaVA와 마찬가지로 GPT-4를 능가하는 비즈니스용 AI 비서를 개발할 계획입니다.

미스트랄이 AI 분야에서 차별화되는 점은 무엇인가요? 미스트랄의 창립 팀은 비즈니스용 AI 비서 분야의 리더들로 구성되어 있습니다. 메타 및 딥마인드 출신의 숙련된 연구진으로 구성된 미스트랄의 빠른 성공은 결코 우연이 아니며, 메타 및 오픈AI와 경쟁하기 위한 향후 계획도 잘 짜여진 것으로 보입니다.

미스트랄 AI의 새로운 AI 비즈니스 어시스턴트 모델의 유연성과 오픈소스 라이선스는 누구나 AI 분야에 진입할 수 있는 기반을 제공합니다. 하지만 이 모델은 제한 없이 사용할 수 있기 때문에 윤리적 사용이 문제가 될 수 있습니다.

결론

미스트랄은 AI의 물결을 순조롭게 타고 있으며, 이 프랑스 스타트업은 창업한 지 2년 만에 Meta 및 OpenAI가 제공하는 독점적인 비즈니스용 AI 솔루션과 치열한 경쟁을 벌일 준비가 되어 있습니다.

이제 이 분야에 또 다른 거물이 등장했으니 언어 모델뿐만 아니라 다른 종류의 모델도 볼 수 있을 것입니다. 이러한 고품질 오픈소스 모델은 AI 산업의 변화를 보여줍니다. 이는 미스트랄 AI와 같은 새로운 비즈니스 AI 모델이 메타나 오픈AI와 같은 미국의 거대 AI 기업과 직접 경쟁할 수 있게 되었다는 것을 의미합니다.

자세히 보기: 2023년 상위 6대 AI 도구 디렉토리

메타의 AI 스튜디오: 나만의 AI 챗봇, 도구 및 소프트웨어 만들기

With AI Studio's advanced capabilities addressing a range of chatbot requirements, coupled with the sandbox tool, Meta's efforts toward making AI accessible for all can be expected to transform the chatbot arena for professional and personal usage.

최근 열린
메타 커넥트 2023
행사에서 메타의 CEO 마크 저커버그는 개인과 기업을 위한 다양한 AI 경험을 다음과 같이 소개했습니다.
AI 스튜디오
. AI Studio를 사용하면 나만의 AI 챗봇, 도구 또는 소프트웨어를 만들 수 있습니다! 전 세계 15억 명의 AI 챗봇 사용자를 보유한 Facebook의 모회사 Meta는 누구나 AI를 개발할 수 있도록 하는 것을 목표로 합니다.

메타의 새로운 AI 혁신은 코딩에 대한 전문 지식 없이도 개인화된 AI 챗봇을 만들 수 있는 기능을 제공합니다.

“주로 생산성, 커뮤니케이션 개선, 사용자 참여 측면에서 중소기업 및 엔터프라이즈 측면도 분명히 존재합니다 .”라고 Gartner의 애널리스트 아룬 찬드라세카란은 말합니다.

사전 학습된 다양한 모델과 사용자 친화적인 드래그 앤 드롭 툴을 제공하는 AI Studio를 사용하면 누구나 AI 챗봇을 제작하고 학습시킬 수 있습니다. 고객 서비스 챗봇부터 유명인이나 역사적 인물처럼 대화하는 AI 챗봇까지, AI Studio의 창의적인 잠재력은 무한합니다!

AI 생태계에 기여하는 메타데이터

메타는 제너레이티브 AI와 자연어 처리(NLP)에서부터 컴퓨터 비전 및 기타 AI의 핵심 영역에 이르기까지, 오랫동안 협업적이고 윤리적인 AI 솔루션을 통해 사람들을 재미있고 영감을 주는 방식으로 연결하는 데 주력해 왔습니다. 메타 커넥트 2023에서는 AI 스티커, 이미지 편집용 에뮤, 레이밴 스마트 클래스, 퀘스트 3 등이 출시되었습니다.

시계! 오리진 스토리 – 메타 AI

2016년, 당시 페이스북으로 불리던 메타는 기업용 메시징 챗봇을 위한 메신저 개발 키트를 출시했습니다. 바로 이때 AI Studio가 처음 도입되었습니다. 하지만 오늘날의 AI Studio 봇은 엄격하게 프로그래밍된 과거의 규칙 기반 봇과는 전혀 다릅니다. 그들은 더 유능하고 역동적으로 답변합니다.

어떻게?

강력한 언어 모델을 사용하고 있습니다.

그중 하나는 100만 개 이상의 인간 주석을 학습한 Meta의 라마 2입니다.

앞으로 몇 주 동안 무슨 일이 일어날까요? 개발자는 Meta의 API를 사용하여 메시징 서비스를 위한 타사 AI를 만들 수 있습니다. 이 개발은 메신저에서 시작됩니다. 다음은 Instagram과 WhatsApp입니다.

확장을 목표로 하는 소규모 기업부터 커뮤니케이션을 개선하고자 하는 대기업 브랜드에 이르기까지 모든 기업은 고객 서비스를 향상하고 브랜드의 가치를 구현하는 AI를 개발할 수 있습니다. 현재 AI Studio의 주요 사용 사례는 이커머스 및 고객 지원입니다. 메타는 알파 버전으로 시작했지만, 2024년에 AI 스튜디오를 확장하고 개선할 계획입니다.

또한 크리에이터는 메타의 모든 앱에서 자신의 디지털 존재감을 돋보이게 하는 AI를 개발할 수 있게 됩니다. 이러한 AI를 승인하고 직접 제어할 수 있게 됩니다.

확장을 목표로 하는 소규모 기업부터 커뮤니케이션을 개선하고자 하는 대기업 브랜드까지, 모든 기업은 고객 서비스를 개선하고 브랜드의 가치를 구현하는 AI를 개발할 수 있게 됩니다. 현재 AI Studio의 주요 사용 사례는 이커머스 및 고객 지원입니다. 메타는 알파 버전으로 시작했지만 2024년에 AI Studio를 확장하고 개선할 계획입니다.

메타의 AI 샌드박스와 메타버스 시너지 효과

메타는 AI 스튜디오의 데뷔와 함께 2024년에 출시될 샌드박스 도구에 대한 정보를 공개했습니다. 이 플랫폼을 통해 사용자는 AI 제작을 직접 해볼 수 있으며, 잠재적으로 AI 기반 제품 제작을 대중화할 수 있습니다.

더 놀라운 점은 무엇일까요? 메타는 이 샌드박스 도구를 메타버스 플랫폼에 통합할 큰 계획을 가지고 있습니다. 그러한 플랫폼 중 하나가 Horizon Worlds입니다. 이를 통해 AI Studio를 사용하여 만든 다양한 메타버스 게임과 경험을 향상시킬 수 있습니다.

결론

다양한 챗봇 요구 사항을 처리하는 AI Studio의 고급 기능과 샌드박스 도구가 결합되어 누구나 AI에 액세스할 수 있도록 하는 Meta의 노력은 전문가용 및 개인용 AI 챗봇 분야를 변화시킬 것으로 기대됩니다.