Author: Oriol Zertuche

Oriol Zertuche is the CEO of CODESM and Cody AI. As an engineering student from the University of Texas-Pan American, Oriol leveraged his expertise in technology and web development to establish renowned marketing firm CODESM. He later developed Cody AI, a smart AI assistant trained to support businesses and their team members. Oriol believes in delivering practical business solutions through innovative technology.

2023年の不動産向けAI:メリット、ユースケース、事例

The advantages of AI for real estate are on the rise, with new use cases being introduced in the infrastructure market.

不動産業界も、人工知能(AI)革命に無関係ではない。 実際、不動産向けAIの市場規模は2029年までに1335億8900万ドルに達し、年平均成長率(CAGR)は次のように大きく伸びると予想されている。
35%
.

多くの利点を提供するAIは、商業用不動産の売買や投資方法を変えつつある。 このブログでは、AIが不動産にもたらす良いこと、その革新的な使用例や感動的な事例をご紹介します。

AIが不動産にもたらすメリットとは?

使用方法 ビジネスのためのAI 不動産業界に携わるすべての人にとって、より有益なものとなる。 それでは、その素晴らしい利点を探ってみよう:

ワークフローの自動化

不動産会社は、家を売りに出し、すべての事務処理を行い、取引が正しく行われるようにするために、AIを活用したソリューションを採用している。 自動化されたデータ入力、文書管理、コミュニケーションは、エラーの余地を減らし、効率を高め、手間を省くことにつながる。

24時間365日のカスタマーサポート

物件情報から一般的な問い合わせまで、AI チャットボットアシスタント またはバーチャルアシスタントが、あなたの質問にすべて答えてくれる! これにより、顧客満足度とエンゲージメントが向上する。 このリアルタイム・サポートは、購入希望者や賃貸希望者に、時間や季節に関係なくスムーズな体験を提供する。

ホーム検索の改善

家探しをするとき、普通は立地、価格、広さなどを基準にネットで物件を探しますよね? 便利で簡単だ。 しかし、選択肢が多すぎて、素晴らしい住宅を見逃してしまうこともある。 AIはあなたの検索方法を研究し、検索をより正確にするためにあなたが何を求めているかを判断する。 このように、AIは家探しを難しくなくさせ、その結果、住宅購入体験を向上させる。

自動化された投資

効率的な購入戦略と定期的な資産管理により、AIを搭載したインテリジェントCRM(顧客関係管理)システムは、不動産業者がミスを減らし、資産投資をよりスマートに行えるよう支援します。 データ入力を自動化し、どれくらいの賃料が得られるかを予測することで、不動産管理や投資のさまざまな側面を容易にする。 そのため、物件や投資の管理が非常に簡単になる。

より良い顧客リードの特定

AIアシスタント AIアシスタント 理想的な顧客を見つけるための不動産業者のパートナーになるかもしれない。 例えば、Zillow。 データ分析を使って、真剣に買い物をする人と、ウィンドウショッピングをする人を区別する。 自然言語処理(NLP)は価値の高いやり取りを分離し、ニッチな顧客選択においてハイパーローカルの専門家を支援します。 ジローのプレミアム・ブローカー・フレックスのような機械学習ソリューションは、エージェントを探している顧客を正確に特定し、成約時に課金する。

取引プロセスの改善

AIは、迅速な決算、革新的なモバイル・アプリ、徹底したコンプライアンス・チェック、詳細なレポーティングをもたらす。 自動入力可能なデータ・フィールドにより、データ入力エラーが少なくなり、ユーザーにとってプロセス全体がスムーズになります。 AIのスマートで詳細なレポートは、ブローカーやチームがパフォーマンスを評価し、改善するのに役立つ。

不動産におけるAIの活用事例とは?

以下は、不動産におけるAIの主な使用例である:

物件検索と価格

機械学習アルゴリズムは、物件の詳細、所在地、市場の動向、古い売買履歴など、膨大なデータセットを分析する。 これらの情報があれば、AIを搭載したプラットフォームが物件の正確な価値を教えてくれる。 これは、買い手と売り手が自分たちが何を扱っているかを知るのに役立つ。 例えば、こうだ、
ジローのゼスティメイト
採用 ビジネス向けAIを採用し、不動産価値を推定することで、ユーザーに不動産取引のための信頼できる出発点を提供する。

バーチャル物件ツアー

ビジネスにおけるAI は、売り家をチェックする方法を変えた。 没入型3Dツアーは、自宅にいながらにして購入希望者にリアルな体験を提供する。 AIカメラが撮影した画像をつなぎ合わせ、ナビゲート可能なバーチャルツアーを実現する。 誰にとっても時間の節約になるし、直接訪問する回数も減る。

不正行為の検出と防止

不動産取引は時として詐欺の被害に遭い、金銭的損失や法的複雑さを招く。 AIは取引を監視し、異常を特定することで、不正行為の特定と防止を支援する。 機械学習アルゴリズムは、金融取引の不正を検出し、身元を確認し、異常なパターンを追跡することで、不動産取引における不正のリスクを低減することができる。 特に不動産取引は大金が動くことが多いので、このようにAIが保護するレイヤーを増やすことができる。

リスティング・ディスクリプション・ジェネレーション

AIアシスタント ビジネスのためのAIアシスタントGPT-3.5やGPT-4のように、詳細で説得力のある物件説明を独自に書き上げることができる。 彼らは物件、周辺環境、市場で起きていることなど、あらゆることに目を配り、物件の本質を捉えたリスティングを作成する。 これは不動産業者の時間を節約するだけでなく、物件説明の一貫性と品質を保証する。

リード・ジェネレーション

予測分析モデルは、オンライン行動、人口統計情報、不動産プラットフォームとの過去のやりとりなどのデータを評価する。 使用 ビジネスのためのAI また、パーソナライズされたメッセージやコンテンツを潜在的な購入者に送信することで、リードナーチャリングを自動化し、コンバージョンの可能性を高めることもできる。 これは不動産関係者にとって時間の節約になる。 さらに、毎回一貫した一流の物件説明を受けることができます。

不動産業界におけるAI活用事例トップ3

不動産会社は AIをビジネスに活用 その機能を向上させる。 業界の巨人たちがどのようにしているのか見てみよう:

ZillowのAIによる自然言語検索


「寝室やバスルームといった簡単に絞り込める条件だけでなく、バイヤーは自分たちのユニークなライフスタイルにマッチするよう、他にも多くの具体的な特徴を検討しています。


ジェニー・アーデン

ジローのチーフ・デザイン・オフィサー。 “この新しいツールは、簡単でより現代的な検索方法を作り出すことで、時に長くストレスのかかる家探しのプロセスを短縮し、シンプルですっきりとした方法で関連性の高い検索結果を提供するので、ホームショッピングのゲームチェンジャーとなる。”

Zillowは住宅検索を簡素化するAI機能を提供している。 検索バーに「ロサンゼルスで10万ドル以下で裏庭のある家を教えてください」などと入力すればいい。 ZillowのAIは、何百万件もの物件をスキャンし、自然言語によるクエリへの応答を洗練させながら、関連性の高い結果を提供する。 また、検索結果を保存したり、新着物件の通知を受け取ることもできる。

Matterportのバーチャルツアープラットフォーム

マターポートのジェネシスは、多くの現実空間から学んだジェネレーティブAIを使用している。 これを使えば、スキャンした部屋で遊んだり、家具を動かしたり、間取りを変えたりすることができる。 さらに、省エネ、メンテナンス予測、セキュリティ評価、多様なインテリアデザイン用途にも役立つ。

不動産アプリにおけるチャットボットとAIアシスタント

Zillowのアルファ段階のChatGPTプラグインは、ユーザーがOpenAIの チャットボットアシスタント. OpenAIは、不正確な回答を減らし、不適切な回答を防ぐためのセーフガードを導入しています。 この画期的なツールは、「ヴェンディル」を使うことの将来的な可能性を示している。 ビジネスのためのAI不動産をベースに

まとめ

Zillowの自然言語検索、MatterportのGenesis、ChatGPTの不動産プラグインなど、多くの不動産プレーヤーがAIに投資しており、AIが不動産に与える影響は明らかだ。

ワークフローの自動化から年中無休のカスタマーサポートの提供まで、AIは完璧な住宅を見つけやすくし、購入希望者を見つけやすくしている。 また、取引を容易にし、正確な物件説明を生成しながら不正を検出する。 競争力を維持するために、不動産の専門家は、業界の未来を再構築するAIを受け入れなければならない。 不動産ビジネスのためのエンド・ツー・エンドのAIソリューションについてご紹介します。

2023年、SEOのためのAIツール・トップ10 [With Latest Features]

If you're also looking to use AI Tools for SEO, this blog will guide you to a number of AI-powered solutions to improve your SEO strategies.

2023年以前は、SEO(検索エンジン最適化)コンテンツ生成にAIツールを使用しているマーケターはわずか10%だった。 しかし、今年は違う、
58%
への投資を計画している ビジネス向けAI コンテンツとSEO戦略 これは大きな飛躍だ!

SEOにもAIを活用したいとお考えの方に、このブログでは、SEO戦略を改善するためのAIを活用したソリューションを多数ご紹介します。 最適化されたコンテンツ生成のために利用可能な、最も強力なAIツールを見つけてみよう!

1.サーファーSEO

このリストの第1位はSurferSEO– ビジネスAIアシスタント ビジネスAIアシスタント これは、あなたが選んだキーワードで上位表示されているウェブサイトを分析し、的を絞ったオンページ・レコメンデーションを提供する。 キーワード密度からセマンティック分析に至るまで、データに基づいた推奨事項を提供し、あなたが書くコンテンツの質を向上させます。 SurferSEOは、20分以内に記事を作成し、ライターよりも7倍安いコストで記事を作成するとしている!

主な特徴

  • オンページSEO最適化
  • ウェブサイトのバックリンクの提案
  • キーワード密度分析

価格

  • エッセンシャルプラン:月額69ドル
  • アドバンス・プラン:月額149ドル
  • 最大プラン:月額249ドル
  • エンタープライズプランカスタム見積もり
  • サーファーAI:1記事29ドル
  • 監査アドオン:月額49ドル
  • SERP(検索エンジン結果ページ)アナライザー・アドオン:月額29ドル
  • ホワイトレーベルアドオン:月額49ドル
  • APIアドオン:月額29ドル

評価 4.8/5

このリストの1位はSurferSEOで、ビジネスにおけるSEOのためのAIツールであり、あなたが選んだキーワードで上位のウェブサイトを分析し、的を絞ったオンページ・レコメンデーションを提供する。

2.SEMrush

キーワードの調査から競合他社の動向まで、SEMrushはAIを駆使したさまざまなサービスを提供している。 その中には多くのものが含まれている。 AIアシスタントあなたのウェブサイトが検索結果でどこにランクされているかを監視し、改善の機会を特定し、人々が何を探しているかを理解するためのツールです。

ドメインとターゲット・キーワードを指定してください。 SEMrushは、Googleの検索結果の1ページ目を調べ、わずか15分でキーワードを提案する!

主な特徴

  • 詳細なキーワードデータ
  • バックリンク・プロフィールの評価
  • リアルタイムのコンテンツ最適化提案

価格

  • 無料体験あり
  • カスタムプランあり
  • プロプラン:月額129.95ドル
  • Guruプラン:月額249.95ドル
  • ビジネスプラン:月額499.95ドル

評価 4.5/5

キーワードの調査から競合他社の動向まで、SEMrushはSEOのためのAIツールであり、AIを活用したさまざまなサービスを提供している。

3.キーワードインサイト

キーワードインサイトは、AIを活用した直感的なSEOツールです。 直感的なSEOツールです。自然言語処理(NLP)を使用して、簡単なクエリでキーワードを生成し、自動的にグループ化することができます。

主な特徴

  • シードターム、場所、言語に基づく迅速なキーワード生成
  • 関連するクラスタリングの洞察
  • 機械学習による検索エンジン結果ページからのキーワード検索意図の識別と分類

価格

  • 価格情報なし

評価 4.9/5

キーワードインサイトは、AIを活用した直感的なSEOツールで、簡単なクエリでキーワードを生成し、自然言語処理(NLP)を使用して自動的にグループ化することができます。

4.クリアスコープ

Clearscopeは、人工知能を使用して、その分野で最も読まれている記事を分析し、コンテンツのキーワードや主題を提案します。 コンテンツとユーザーの目的を一致させることで、より完全で関連性の高い記事を作成することができる。

主な特徴

  • AIによる上位記事分析
  • キーワードとフレーズの提案
  • コンテンツ・ツールとの統合

価格

  • エッセンシャル・プラン:月額170ドル
  • ビジネスプランカスタム見積もり
  • エンタープライズプランカスタム見積もり

評価 4.9/5

Clearscopeは、人工知能を使用して、その分野で最も読まれている記事を分析し、コンテンツのキーワードや主題を提案します。

5.フレーズ

フレイズはユーザーフレンドリーなSEO AIアシスタント コンテンツを整理、制作、最適化するためのシンプルなインターフェイスを備えています。 投稿タイトルを入力すると、トップライバルの内容を自動的に調べます。 また、AIライターがすでに統合されており、アイデア出しを支援し、コンテンツ作成プロセスを迅速化する。

主な特徴

  • SEO分析
  • 競合他社分析ツール
  • 直感的なユーザーインターフェース

価格

  • ソロプラン:月額14.99ドル
  • ベーシックプラン:月額44.99ドル
  • チームプラン:月額114.99ドル
  • エンタープライズプランカスタム見積もり
  • 無制限のAIコンテンツを提供するProアドオン:月額35ドル

評価 4.9/5

Fraseは、コンテンツを整理、制作、最適化するためのシンプルなインターフェイスを備えた、ユーザーフレンドリーなSEO AIアシスタントです。

6.セルプスタット

Serpstatは、キーワード調査、バックリンク分析、AIアルゴリズムを使ったサイト監査などのサービスを提供している。 競合他社のB2Bコンテンツ戦略に関する洞察を提供し、貴社のウェブサイトにおける開発領域を強調することで、データに基づいた意思決定を行うことができます。

主な特徴

  • 詳細なキーワードデータ
  • 特定キーワードの検索エンジン順位追跡
  • ローカルSEO戦略

価格

  • 無料体験あり
  • カスタムプランあり
  • 個人プラン:月額59ドル
  • チームプラン:月額119ドル
  • 代理店プラン:月額479ドル

評価 4.6/5

Serpstatは、キーワード調査、バックリンク分析、AIアルゴリズムを使ったサイト監査などのサービスを提供している。

7.SEランキング

しっかりとしたオンページとオフページの最適化プランを策定するために、SE Rankingはソーシャルメディアプラットフォームや競合他社のパフォーマンス、検索トラフィック、競合他社を分析するための詳細なツールキットを用意しています。 また、APIベースのSEOレポートやホワイトラベル・ソリューションも提供している。 さらに、リードジェネレーターウィジェットは、コンバージョン率を最大化するのに役立ちます。

主な特徴

  • 競合他社および自社コンテンツのSEOパフォーマンスモニタリング
  • コアウェブメトリクス、クロールされたページ、ヘルススコアを単一のダッシュボードで表示します。
  • ウェブページのインデックス作成

価格

  • 14日間の無料トライアルあり
  • カスタムプランあり
  • エッセンシャルプラン:月額55ドル
  • プロプラン:月額109ドル
  • ビジネスプラン:月額239ドル

評価 4.8/5

しっかりとしたオンページとオフページの最適化プランを策定するために、SE Rankingはソーシャルメディアプラットフォームや競合他社のパフォーマンス、検索トラフィック、競合他社を分析するための詳細なツールキットを用意しています。

8.ワードリフト

比較的新しいSEOツールであるWordLiftは、構造化データを生成するために使用される特注のナレッジグラフツールです。 ビジネス用AI. HTMLファイルのメタディスクリプションを新しいテキストで更新します。 コンテンツ調整の提案は、ウェブサイト訪問者のユーザーエクスペリエンスの向上に役立ちます。

主な特徴

  • eコマース・ウェブサイトのランクを向上させるよう設計
  • コンテンツを整理してGoogleショッピングでの表示を改善
  • Data Studioとの統合

価格

  • 無料体験あり
  • カスタムプランあり
  • スタータープラン:月額59ユーロ
  • プロフェッショナル・プラン:月額99ユーロ
  • ビジネス+Eコマースプラン:月額249ユーロ

評価 4.7/5

比較的新しいSEOツールであるWordLiftは、ビジネスのためにAIを使って構造化データを生成するために使われる特注のナレッジグラフ・ツールである。

9.マーケットミューズ

MarketMuseは、SEO戦略とコンテンツインテリジェンスを管理するための一連のツールを提供します。 個々のページや「コンテンツクラスター」についてのフィードバックを提供し、ページの集合体全体のトピックの関連性と権威を評価する。 これを使うことができる。 AIアシスタントがコンテンツを計画し、クラスター化し、競合他社と比較分析し、コンテンツ概要を検討し、最適化する。

主な特徴

  • 詳細なSERP分析
  • コンテンツ・ブリーフ・ジェネレーター
  • コンテンツ・プランニング・ツール

価格

  • 7日間の無料トライアルあり
  • スタンダードプラン:月額149ドル
  • チームプラン:月額399ドル
  • プレミアムカスタム見積もり

評価 4.6/5

MarketMuseは、SEO戦略とコンテンツインテリジェンスを管理するための一連のAIツールを提供しています。

10.ジャスパー

ジャスパーはジェネレーティブAIの早い段階での勝者と考えられている ビジネス向けAI. これを使えば、あなたの業界やターゲット市場に最適なコンテンツ・プロンプトを作成することができる。 ブログ記事、ソーシャルメディアへの投稿、ウェブサイトのコピーなど、企業のブランド・ボイスを反映したエキサイティングでユニークなコンテンツを制作し、同時にウェブサイトのランキングを向上させることができます。

主な特徴

  • ブランドメッセージのためのブランド・ボイス・トレーニング
  • 短編および長編コンテンツの制作
  • SurferSEOの統合
  • 25言語をサポート

価格

  • 7日間無料体験
  • クリエイタープラン:月額49ドル
  • チームプラン:月額125ドル
  • ビジネスカスタム見積もり

評価 4.7/5

Jasperは、ビジネス向けジェネレーティブAIの初期の勝者と考えられている。これを使えば、業界やターゲット市場に最適なコンテンツ・プロンプトを作成することができる。

ビジネスに最適なAI SEOツールを選ぶには?

ビジネスに最適なAI SEOツールの選択は、デジタルマーケティングとSEO戦略に大きな影響を与える重要な決断です。 十分な情報に基づいて選択するために、以下の要素を考慮してください:

1.ワークフローとの統合

AI SEOツールが、現在使用しているコンテンツ作成ワークフロー、プロジェクト管理ソリューション、その他のツールとどの程度統合されているかを評価する。 シームレスな統合は、効率を高め、プロセスを合理化することができます。

2.データソースと洞察

AI SEOツールのデータソースを調べ、提案やコンテンツ生成を行う。 多様なデータにアクセスできるツールは、より正確な洞察を提供できる。 ツールが特定の業界やニッチに合致していることを確認する。

3.タスクの自動化

AI SEOツールが時間のかかる反復作業を自動化するかどうかをチェックする。 キーワードリサーチ、コンテンツ最適化、パフォーマンス追跡を自動化する機能を探す。 自動化は貴重な時間とリソースを節約できる。

4.ユーザーフレンドリーなインターフェイス

プラットフォームがSEOプロセスをどのように案内してくれるかを検討しよう。 直感的でユーザーフレンドリーなインターフェイスは、学習曲線を短縮し、試行錯誤の必要性を最小限に抑えることができます。 これは、ユーザーのチームがある場合は特に重要です。

5.コラボレーション能力

AI SEOツールが共同作業環境をサポートしているかどうかを評価する。 複数のチームメンバーがSEOタスクで協力し、洞察を共有し、進捗を追跡できるようにする必要がある。 大規模なプロジェクトではコラボレーションが重要だ。

6.コンテンツ最適化機能

コンテンツ最適化機能を提供するAI SEOツールを探そう。 これには、コンテンツを分析して改善を提案するための機械学習や、コンテンツの質を高めるための自然言語処理(NLP)が含まれます。 AIによるテキスト生成もSEOに配慮したものでなければならない。

7.キーワード調査能力

ツールに強力なキーワード調査機能があることを確認する。 さまざまな検索エンジンで高い評価を受けそうなトピックを見つけるのに役立つはずだ。 キーワード・リサーチは、SEOを成功させるための要である。

8.試用期間またはデモ

可能な限り、AI SEOツールのプロバイダーが提供する試用期間やデモを利用しよう。 これにより、実際のシナリオでツールをテストし、ビジネスニーズへの適合性を評価することができます。

9.カスタマーサポートとトレーニング

ツールプロバイダーが提供するカスタマーサポートとトレーニングのレベルを検討する。 チュートリアル、ドキュメント、迅速なカスタマーサポートへのアクセスは、スムーズな採用プロセスにとって非常に貴重なものとなる。

10.レビューとお客様の声

AI SEOツールを使用した他の企業のレビューや証言を調査する。 これによって、実際のパフォーマンスや効果についての洞察を得ることができる。

続きを読む2023年、マーケティングのためのAIツールトップ11:究極のマーケター・スタック

SEOのためのAIツールを賢く選ぼう

SEOにおけるAIの利用は急速に拡大しているが、それには理由がある。 AIを搭載したツールは、時間を節約し、検索エンジンの結果ページで上位に表示されやすいコンテンツを作成するのに役立ちます。

SEOのためのAIに慣れていない場合は、SurferSEOやSEMrushのようなAIアシスタントから始めることができる。 これらのツールは、キーワード調査、競合分析、オンページSEO最適化など、多くの機能を提供している。 AIがSEOにどのように利用できるかをよりよく理解したら、FraseやMarketMuseのようなより専門的なツールを検討することができる。

2023年、マーケティングのためのAIツールトップ11:究極のマーケター・スタック

Choose the best AI tools for marketing strategy and business in 2023

専門家は、ビジネス・マーケティングにおけるAIは2028年までに1075億ドル以上に急増すると予測している。 実際、市場にはすでに最先端のマーケティング用AIツールがあふれている。 ビジネスとマーケティングのための高度なAIツールを探求する前に、その意味と意義を理解しよう。

マーケティングのためのAIツールとは?

マーケティングAIツールとは、人工知能(AI)技術を活用してマーケティングの様々な側面を強化・効率化するソフトウェア・アプリケーションである。 これらのツールは、機械学習、マーケティング分析、予測アルゴリズムの力を活用し、マーケティング作業を自動化、最適化、補強し、最終的に企業やマーケティング担当者がデータに基づいた意思決定を行い、マーケティング戦略を改善するのに役立ちます。

反復タスクの自動化

AIマーケティングツールは、機械学習、マーケティング分析、予測アルゴリズムを活用し、データ分析、レポート作成、Eメールマーケティング、ソーシャルメディア投稿などのタスクを自動化する。 この自動化によって、マーケティング担当者はキャンペーンのより戦略的でクリエイティブな側面に集中することができる。

顧客インサイト

AIツールは膨大な量のデータを分析し、顧客の行動、嗜好、傾向を洞察する。 このような洞察は、マーケティング担当者がキャンペーンを特定のターゲットオーディエンスに合わせて調整するのに役立ち、より効果的でパーソナライズされたマーケティング活動を実現します。

予測分析

予測アルゴリズムを使用することで、AIマーケティングツールはトレンドや顧客の行動を予測することができ、マーケティング担当者はB2Bコンテンツの戦略、タイミング、チャネルについて情報に基づいた意思決定を行うことができ、最終的にエンゲージメントとコンバージョン率の向上につながる。

チャットボットとバーチャルアシスタント

AIを活用したチャットボットやバーチャルアシスタントは、顧客からの問い合わせに即座に対応し、24時間365日のサポートを提供する。 顧客満足度を高め、対応時間を短縮する。

パーソナライゼーション

AIツールは、ダイナミックなコンテンツ作成とパーソナライゼーションを可能にし、マーケティング担当者は個々のユーザーに合わせたコンテンツを配信し、顧客エンゲージメントを向上させ、コンバージョンを促進することができる。

推薦エンジン

Eコマースやコンテンツベースのプラットフォームは、ユーザーの過去の交流や嗜好に基づいて、商品、サービス、コンテンツを提案するレコメンデーション・エンジンから利益を得ている。

広告の最適化

AIは、ROIを最大化するために最適な広告配置、入札戦略、広告コンテンツを決定することで、デジタル広告キャンペーンの最適化を支援します。

コンテンツ・ジェネレーション

AIは、ブログ記事、商品説明、ソーシャルメディアの更新など、文章コンテンツの作成を支援することができる。 また、ビジュアルやビデオの作成にも使用できる。

リードスコアリング

AIツールは、コンバージョンの可能性に基づいてリードを自動的にスコアリングし、営業チームが最も有望なリードに優先的に取り組むことを可能にする。

A/Bテスト

AIを活用したA/Bテストは、マーケティング資料のさまざまなバリエーションをテストし、どれが最も効果的かを判断するプロセスを加速させることができる。

パフォーマンス分析

AI分析ツールはリアルタイムのパフォーマンス分析を提供し、マーケティング担当者がキャンペーンのパフォーマンスを理解し、必要に応じて調整を行うのに役立つ。

クロスチャネル統合

多くのAIマーケティングツールは、様々なマーケティングチャネルをシームレスに統合し、Eメール、ソーシャルメディア、ウェブなどを横断した統一的なマーケティングアプローチを可能にする。

1.ジャスパー

Jasperは、OpenAIによって作成されたGPT3モデルを使用して、広告、電子メール、ランディングページ、記事、ソーシャルメディア投稿用のテキストを作成します。 ブランド名または製品を送信すると、コピーが作成されます。 このAIマーケティングツールは、数回クリックするだけで、タイトルやメタディスクリプション、商品の箇条書きや説明文も作成できる。

主な特徴

  • コンテンツ・ジェネレーション
  • トーン設定
  • 盗作チェッカー
  • カスタマイズ可能なテンプレート

価格

  • 7日間の無料トライアルあり
  • スターター40ドル(2万語)
  • ボス・モード(5万語)で82ドル

評価4.7/5

Jasperは、OpenAIによって作成されたGPT3モデルを使用して、広告、電子メール、ランディングページ、記事、ソーシャルメディア投稿用のテキストを作成します。

2.逆境

Adverityは、すべてのマーケティング指標を一箇所で見ることができます。 あらゆるチャネルのキャンペーンを含む、多くのソースからのすべてのマーケティングデータは、簡単に分析できるように一元管理されている。 AI従業員チームは、この方法でトレンドと洞察を特定し、より賢明な意思決定を行うために必要な情報を提供することができます。

主な特徴

  • コーディングの専門知識がなくてもプラットフォームを利用できる、ビルド済みのコネクターとコード不要のテンプレート
  • データを一元管理

価格

  • 14日間の無料トライアルあり
  • スタンダードプラン:月額500ユーロから
  • プロフェッショナルプラン:月額2,000ユーロから

評価4.5/5

Adverityを使用すると、すべてのマーケティング指標を一箇所で確認できます。あらゆるチャネルのキャンペーンを含む多くのソースからのすべてのマーケティングデータを一元化し、簡単に分析できるようにします。

3.フリック

FlickソーシャルメディアAIアシスタントは、ソーシャルメディアコンテンツのアイデア出し、投稿の作成、準備を簡単にするマーケティングツールです。 簡単なセットアップと24時間のサポートを提供します。

主な特徴

  • AIキャプションライティング(オンブランド)
  • AIアイデア・ブレーンストーミング
  • ポスト・スケジューリング
  • 自動提案ハッシュタグ
  • ハッシュタグ検索&管理

価格

  • 7日間の無料トライアルあり
  • 無料プランあり
  • ソロプラン:月額11ポンドから
  • プロプラン:月額24ポンドから
  • 代理店プラン:月額55ポンドから

評価4.7/5

FlickソーシャルメディアAIアシスタントは、ソーシャルメディアコンテンツのアイデア出し、投稿の作成、準備を簡単にするマーケティングツールです。

4.プレディス

Predisは、あなたの簡単な単語入力で、Instagramのリールから単一の画像投稿まで、あらゆるものを作成する企業のためのAIアシスタントとして機能します。 徹底的な競合調査により、このAIツールを使ったマーケティングで競合他社に何が有効かをより深く理解することができる。

主な特徴

  • テキストを生成する内蔵AIチャット機能
  • ソーシャルメディア上で一貫性を保つために投稿目標を設定する

価格

  • ソロプラン:月額29ドル
  • スタータープラン:月額59ドル
  • 代理店プラン:月額139ドルから

評価4.8/5

Predisは、あなたの簡単な単語入力で、Instagramのリールから単一の画像投稿まで、あらゆるものを作成するビジネスのためのAIアシスタントとして機能します。

5.ドリフト

ドリフトのAI機能は会話型マーケティングに最適です。 彼らは、重要なアカウントにVIP体験を提供する手助けをしたり、チャットボットアシスタントが管理できる簡単な質問の処理から、過重労働のサポート担当者を解放したりすることができる。

主な特徴

  • ポップアップ・チャット
  • ターゲット・メール
  • アプリ内メッセージ
  • ライブチャット
  • カスタマイズ・インターフェース

価格

  • プレミアムプラン:月額2500ドルから
  • アドバンスプランとエンタープライズプランカスタム見積もり

評価4.4/5

ドリフトのAI機能は会話型マーケティングに最適です。

6.グロースバー

GrowthBarは、GPT-3というビジネス向けAIを使ってコンテンツ作成を自動化します。 このマーケティング用AIツールは、特定の文字数、リンク、写真、キーワードなどを推奨することができる。 ブログ記事のコンテンツアウトラインの構築と包括的なバックリンクの提供は、GrowthBarのいくつかの機能である。 さらに、Chromeアドオンも提供している。

主な特徴

  • 検索エンジン最適化
  • パラグラフ・ジェネレーター
  • メタ・ジェネレーター
  • AIブログ・ツール

価格

価格については公表していない

評価4.8/5

GrowthBarは、ビジネス向けAI「GPT-3」を使ってコンテンツ作成を自動化します。特定の文字数、リンク、写真、キーワードなどを推奨することができます。

7.ブランド24

ブランドは、Brand24の高度なAIソーシャルメディア・モニタリング・プラットフォームで、自社のビジネスに関する良いコメントも悪いコメントもリアルタイムで監視することができます。 ビジネス用のAIアシスタントのように機能し、企業、製品、競合他社に関するオンライン・ディスカッションを調査する。

主な特徴

  • ディスカッション・ボリューム・チャート
  • データのエクスポート
  • センチメント・スコアリング
  • 社会測定

価格

  • 無料体験あり
  • 個人プラン:月額79ドル
  • チームプラン:月額149ドル
  • プロプラン:月額199ドル
  • エンタープライズ・プラン:月額399ドル

評価4.6/5

ブランドは、Brand24の高度なAIソーシャルメディア・モニタリング・プラットフォームで、自社のビジネスに関する良いコメントも悪いコメントもリアルタイムで監視することができます。

8.フレーズ

Phraseeは “ブランド言語最適化 “を専門としている。 このマーケティング用AIツールは、ビジネスコピーのブランド言語を強化する。 自然言語処理システムと機械学習アルゴリズムを使って、Eメール、インスタグラム、フェイスブック、さらにはプッシュ通知用のコピーを作成することができる。

主な特徴

  • コンテンツ管理
  • 予測分析
  • ダイナミック・コンテンツ
  • エンゲージメント指標

価格

カスタム見積もり

評価4.8/5

Phraseeは

9.マーケットミューズ

MarketMuseは、Eメール、セールスコピー、ランディングページ、エッセイなど、最適化された長文コンテンツの作成を支援します。 内容概要とKPIがガイダンスとして含まれている。 このコピーは、AIの推奨に従って、内蔵エディターを使ってユーザーがさらに編集することができる。

主な特徴

  • カテゴリー分け
  • SERPランク追跡
  • データの可視化
  • 競合分析

価格

  • 無料版あり
  • スタンダードプラン:月額149ドル
  • チームプラン:月額399ドル
  • プレミアムプランカスタム見積もり

評価4.6/5

MarketMuseは、Eメール、セールスコピー、ランディングページ、エッセイなど、最適化された長文コンテンツの作成を支援します。

10.オプティムーブ

オプティモーブのチャットボット・アシスタント、オプティボットは、提供されたすべての消費者データを検索・評価し、有益なインサイトを提供する。 このAIアシスタントは、損失に応じて特定のマーケティング・イニシアチブを中止するようアドバイスしたり、過剰な企業連絡を受け取った可能性のある顧客に対して警告を発したりすることができる。

主な特徴

  • キャンペーンインサイト
  • ハイパーセグメンテーション
  • A/Bテスト
  • マルチチャンネル・トラッキング

価格

カスタム見積もり

評価4.6/5

オプティモーブのチャットボット・アシスタント、オプティボットは、提供されたすべての消費者データを検索・評価し、有益なインサイトを提供する。

11.ハブスポットAI

ハブスポットのAI機能は、組織をサポートするだけでなく、顧客サービスにも役立つコンテンツの作成を支援します。 高品質のコンテンツを開発するために、HubSpotのすべてのツールと統合しています。 別々のアプリケーションを使い分けることなく、AI社員チームはハブスポットの会話インテリジェンスやその他のツールを使ってブログ記事やランディングページなどを書くことができます。

主な特徴

  • キャンペーンアシスタントとコンテンツアシスタントを使用して、Eメールやソーシャルメディアのコピーからメタディスクリプションやソーシャルメディアのキャプションまで、文章コンテンツを作成する。
  • GPTが提供するスマートなCRMチャットボットアシスタント「ChatSpot」。

価格

  • 無料デモあり
  • マーケティング・ハブ無料
  • Marketing Hub Starter: 月額18ドルから
  • マーケティングハブ・プロ月額800ドルから

評価4.4/5

ハブスポットのAI機能は、組織をサポートするだけでなく、顧客サービスにも役立つコンテンツの作成を支援します。

マーケティングに最適なAIツールを選ぶには?

マーケティングに最適なAIツールを選ぶには、まずマーケティングの目的を明確にすることから始めよう。 顧客エンゲージメントの向上、広告キャンペーンの最適化、データ分析の強化など、AIツールで何を達成したいのかを決める。 明確な目標を持つことは、ツール選択の指針として不可欠である。

ターゲットオーディエンスを理解する

ターゲットとする視聴者の特徴や嗜好を考慮する。 オーディエンスの行動やニーズによって、B2BやB2Cのマーケティングに適したAIツールは異なるかもしれない。 ツールをターゲット市場に合わせるには、オーディエンスを理解することが重要です。

予算の査定

AIツールの予算を決める。 無料のツールやベーシック・バージョンのツールもあれば、サブスクリプションや多額の投資が必要なツールもある。 ツールのコストと、マーケティング活動への潜在的な投資対効果のバランスを取ることが重要です。

研究オプション

マーケティングに利用可能なAIツールを徹底的に調査する。 実績のある評判の良いツールを探しましょう。 レビュー、ケーススタディ、ユーザーの声を読むことは、その有効性を評価するのに役立つ。

互換性と統合

選択するAIツールが、CRM、メールマーケティングプラットフォーム、分析ツールなど、既存のマーケティングスタックとシームレスに統合できることを確認する。 マーケティング業務の効率化には、互換性が不可欠です。

特徴と能力

各AIツールの具体的な特徴と能力を評価する。 データ分析、パーソナライゼーション、自動化、レポーティングなどの要素を考慮する。 その選択は、実施予定のマーケティング戦略に沿ったものでなければならない。

試用期間

可能な限り、AIツール・プロバイダーが提供する試用期間やデモを利用すること。 これにより、ツールをテストし、実際のシナリオでどの程度機能するかを確認してから、コミットメントすることができる。

使いやすさ

AIツールの使い勝手を評価する。 マーケティングチームが直感的に使いやすいものでなければならない。 複雑なツールの場合、トレーニングやサポートが必要になり、業務効率に影響を与える可能性があります。

データ・セキュリティとコンプライアンス

特に機密性の高い顧客データを扱う場合は、AIツールがデータ・セキュリティとプライバシーに関する規制を遵守していることを確認する。 GDPR、CCPA、その他の関連法を遵守することは、視聴者との信頼関係を維持するために不可欠です。

サポートとトレーニング

ツールプロバイダーが提供するサポートとトレーニングのレベルを検討する。 チュートリアル、ドキュメント、迅速なカスタマーサポートへのアクセスは、スムーズな採用プロセスにとって非常に貴重なものとなる。

スケーラビリティ

ビジネスに合わせて拡張できるAIツールを選ぶ。 マーケティングのニーズは進化する可能性があるため、一緒に成長できるツールを持つことは、頻繁なツールの入れ替えを避ける上で有利である。

測定結果

AIツールを導入したら、そのパフォーマンスとマーケティング活動への影響を注意深く監視すること。 指標と主要業績評価指標(KPI)を活用して効果を測定し、必要に応じて調整することで、マーケティング目標を達成する。

続きを読む2023年、SEOのためのAIツールトップ10[With Latest Features]

AIはなぜ収益マーケティングに重要なのか?

AIは、より的を絞った、効率的な、顧客中心のマーケティングを実現することで、収益マーケティングに変革をもたらしつつある:

よりスマートなターゲット広告

AIはビッグデータを活用して、的を射た広告を作成する。 顧客のパターンや嗜好を理解することで、より反響の大きいキャンペーンを作成し、コンバージョンの向上や収益の増加につなげることができます。

洗練された検索戦略

AIは検索戦術を研ぎ澄まし、マーケティング活動が重要な部分にレーザーフォーカスされるようにする。 この精度の高さは、マーケティング費用を節約するだけでなく、収益マーケティングの要であるリターンの向上にもつながる。

ハイパー・パーソナライゼーション

AIは個人の嗜好に合わせてコンテンツを調整する能力に長けており、エンゲージメントとロイヤリティを高める。 このようなパーソナルなタッチは、長期的な顧客関係を育む上で重要であり、継続的な収益拡大にとって極めて重要である。

自動化されたカスタマーサービス

チャットボットとAI主導のツールは、顧客とのやり取りを合理化し、全体的な体験を向上させる。 この効率は、顧客を維持するだけでなく、彼らの購買意欲を刺激し、売上を向上させる。

カスタマージャーニーの強化

  • 認知フェーズでは、AIが詳細な顧客ペルソナを作成し、最もエンゲージメントの可能性が高い顧客をターゲットにする。
  • 検討段階では、AIを活用したターゲティング広告により、顧客は関連性の高い商品を発見しやすくなる。
  • 購買フェーズでは、AIがパーソナライズされたアップセルやクロスセルを提案し、平均注文額を高める。
  • 購入後のリテンションフェーズでは、AIがカスタマイズされたオファーを作成し、リピート購入を促す。
  • AIはまた、レビューや紹介のためのアウトリーチをパーソナライズし、満足した顧客をブランドの支持者に変える。

AIをカスタマージャーニー全体に統合することで、企業は新規顧客を獲得し、既存顧客との関係を深め、安定した収益源を確保し、マーケティング施策のROIを高めることができます。

マーケティング用AIツールで競合に勝つ

コンテンツ生成からアナリティクスの一元化、ソーシャルメディアの専門知識、会話型マーケティング、ブランド言語の最適化まで、これらのツールはビジネス・マーケティングのAIを再定義する。 AIをビジネスに活用することは単なるトレンドではなく、革命であることを忘れてはならない。 それを受け入れ、この終わりのない分野でクリエイティブであり続ける!

続きを読む2023年のAIツール・ディレクトリ・トップ6

RAG APIとは何ですか?

RAG API is a framework with the commitment to enhance generative AI by guaranteeing that its outputs are current, aligned with the given input, and, crucially, accurate.

データを効率的に検索し、処理する能力は、今日の技術集約的な時代において、ゲームチェンジャーとなっている。 RAG APIがデータ処理をどのように再定義するのかを探ってみよう。 この革新的なアプローチは、大規模言語モデル(Large Language Models:LLM)と検索ベースの技術を組み合わせ、データ検索に革命をもたらす。

大規模言語モデル(LLM)とは?

大規模言語モデル(LLM)は、検索拡張世代(RAG)の基盤となる高度な人工知能システムである。 GPT(Generative Pre-trained Transformer)のようなLLMは、高度に洗練された言語駆動型AIモデルである。 彼らは広範なデータセットで訓練されており、人間のようなテキストを理解し、生成することができる。

RAG APIの文脈では、これらのLLMはデータ検索、処理、生成の強化において中心的な役割を果たし、データ相互作用を最適化するための多用途で強力なツールとなっている。

RAG APIのコンセプトを簡単に説明しよう。

RAGとは?

RAG(Retrieval-AugmentedGeneration)は、生成AIを最適化するために設計されたフレームワークである。 その主な目的は、AIによって生成される回答が、入力プロンプトに対して最新かつ適切であるだけでなく、正確であることを保証することである。 この正確さへのこだわりは、RAG APIの機能の重要な側面である。 これは、GPTのようなラージ・ランゲージ・モデル(LLM)と呼ばれる超スマートなコンピューター・プログラムを使ってデータを処理する画期的な方法である。

これらのLLMは、その前の単語を理解することによって、文の中で次に来る単語を予測することができるデジタル魔法使いのようなものだ。 彼らは膨大な量のテキストから学んでいるので、とても人間らしく聞こえるように書くことができる。 RAGでは、これらのデジタルウィザードを使用して、カスタマイズされた方法でデータを検索し、作業することができます。 データについて何でも知っている本当に賢い友人に助けてもらっているようなものだ!

基本的に、RAGはセマンティック検索で取得したデータを、LLMへのクエリに注入して参照する。 これらの用語については、記事の中でさらに掘り下げていく。

RAG APIのプロセス

RAGについてもっと詳しく知りたい方は、Cohereの包括的な記事をご覧ください。

RAG vs. ファインチューニング:その違いは?

アスペクト RAG API 微調整
アプローチ 既存のLLMをデータベースのコンテキストで補強 特定の業務に特化したLLM
計算リソース 少ない計算資源で済む かなりの計算資源を必要とする
データ要件 小規模なデータセットに適している 膨大なデータを必要とする
モデルの特異性 機種にとらわれず、必要に応じて機種変更が可能 LLMの切り替えは通常非常に面倒である。
ドメイン適応性 ドメインにとらわれず、様々なアプリケーションに対応可能 異なるドメインに適応する必要があるかもしれない
幻覚軽減 幻覚を抑える効果 注意深く調整しないと、幻覚が増える可能性がある。
一般的な使用例 質疑応答(QA)システム、各種アプリケーションに最適 医療文書分析などの専門業務

ベクター・データベースの役割

ベクトル・データベースは、検索補強型生成(RAG)や大規模言語モデル(LLM)において極めて重要である。 これらは、データ検索、コンテキストの補強、およびこれらのシステムの全体的なパフォーマンスを向上させるためのバックボーンとして機能する。 ここでは、ベクター・データベースの重要な役割を探る:

構造化データベースの制限を克服する

従来の構造化データベースは、RAG APIで使用する場合、その硬直的であらかじめ定義された性質のために、不足することが多い。 LLMに文脈情報を与えるという柔軟で動的な要求に対応するのに苦労している。 ベクター・データベースは、この制限に対処するために導入された。

ベクトル形式のデータの効率的な保存

ベクトルデータベースは、数値ベクトルを使ったデータの保存と管理に優れています。 このフォーマットは、多目的で多次元的なデータ表現を可能にする。 これらのベクトルは効率的に処理することができ、高度なデータ検索を容易にする。

データの妥当性とパフォーマンス

RAGシステムは、ベクトルデータベースを活用することで、関連するコンテキスト情報に素早くアクセスし、検索することができる。 この効率的な検索は、LLMが応答を生成するスピードと精度を高めるために極めて重要である。

クラスタリングと多次元分析

ベクトルは、多次元空間のデータポイントをクラスタリングして分析することができる。 この機能はRAGにとって非常に貴重で、コンテクストデータをグループ化し、関連付け、LLMに首尾一貫して提示することができる。 これは、より良い理解と文脈を考慮した応答の生成につながる。

セマンティック検索とは?

意味検索は、RAG(Retrieval-Augmented Generation)APIやLLM(Large Language Models)の要である。 情報へのアクセスや理解の仕方に革命をもたらしたその意義は、いくら強調してもしすぎることはない。

従来のデータベースを超える

セマンティック検索は、しばしば動的で柔軟なデータ要件の処理に苦労する構造化データベースの限界を超える。 その代わりに、ベクターデータベースを利用することで、RAGとLLMの成功に不可欠な、より多用途で適応性のあるデータ管理を可能にしている。

多次元分析

セマンティックサーチの重要な強みの一つは、データを数値ベクトルの形で理解する能力である。 この多次元分析は、コンテキストに基づくデータ関係の理解を強化し、より首尾一貫した、コンテキストを考慮したコンテンツ生成を可能にする。

効率的なデータ検索

データ検索、特にRAG APIシステムにおけるリアルタイムのレスポンス生成には効率が不可欠である。 セマンティック検索はデータアクセスを最適化し、LLMを使った回答生成の速度と精度を大幅に向上させる。 医療分析から複雑なクエリまで、さまざまな用途に適応できる汎用性の高いソリューションであると同時に、AIが生成するコンテンツの不正確さを低減する。

RAG APIとは?

RAG APIをRAG-as-a-Serviceとして考えてみよう。 RAGシステムのすべての基本を1つのパッケージにまとめたもので、あなたの組織でRAGシステムを採用するのに便利です。 RAG APIを使用することで、RAGシステムの主要な要素に集中し、残りをAPIに処理させることができます。

RAG APIクエリの3つの要素とは?

RAGクエリは3つの重要な要素に分解することができる:コンテキスト」、「役割」、「ユーザークエリ」である。これらの要素は、RAGシステムを動かすビルディングブロックであり、それぞれがコンテンツ生成プロセスにおいて重要な役割を果たします。

RAG(Retrieval-Augmented Generation)の複雑さを掘り下げていくと、RAGクエリは3つの重要な要素に分解できることがわかる: コンテキスト、役割、そしてユーザークエリ。 これらのコンポーネントは、RAGシステムを動かす構成要素であり、それぞれがコンテンツ生成プロセスにおいて重要な役割を果たしている。

について コンテクスト はRAG APIクエリの基礎を形成し、重要な情報が存在するナレッジリポジトリの役割を果たす。 既存の知識ベース・データにセマンティック検索を活用することで、ユーザーのクエリに関連したダイナミックなコンテキストが可能になる。

その 役割 は、RAGシステムの目的を定義し、特定のタスクを実行するよう指示する。 要件に合わせたコンテンツを生成したり、説明を提供したり、問い合わせに答えたり、情報を要約したりする際に、モデルをガイドする。

ユーザー ユーザークエリ はユーザーの入力であり、RAGプロセスの開始を示す。 ユーザーとシステムとのインタラクションを表し、ユーザーの情報ニーズを伝える。

RAG API内のデータ検索プロセスは、セマンティック検索によって効率化されている。 このアプローチは、多次元的なデータ分析を可能にし、コンテキストに基づくデータ関係の理解を向上させる。 一言で言えば、RAGクエリとセマンティック検索によるデータ検索の解剖学的構造を把握することで、この技術の潜在能力を解き放ち、効率的な知識アクセスとコンテキストを考慮したコンテンツ生成を促進することができる。

プロンプトで関連性を高めるには?

プロンプトエンジニアリングは、RAG内の大規模言語モデル(LLM)を操作して、特定のドメインに文脈に関連した応答を生成する上で極めて重要である。

コンテキストを活用するRAG(Retrieval-Augmented Generation)の能力は恐ろしいものだが、高品質の回答を確保するためには、コンテキストを提供するだけでは必ずしも十分ではない。 そこで、プロンプトという概念が登場する。

よく練られたプロンプトは、LLMのロードマップの役割を果たし、望ましい反応へと導く。 通常、以下の要素が含まれる:

文脈の関連性を解き明かす

検索補強世代(RAG)は、コンテキストを活用するための強力なツールである。 しかし、質の高い回答を保証するには、単なる文脈だけでは不十分かもしれない。 これは、RAG内の大規模言語モデル(LLM)が特定のドメインに沿った応答を生成するように誘導する上で、プロンプトが非常に重要であることを示している。

ユースケースに合わせたボット役割構築のロードマップ

うまく構成されたプロンプトは、LLMを望ましい回答へと導くロードマップの役割を果たす。 通常、さまざまな要素で構成されている:

ボットの正体

ボットの名前を出すことで、対話の中でボットのアイデンティティを確立し、会話をよりパーソナルなものにすることができる。

タスクの定義

LLMが実行すべきタスクや機能を明確に定義することで、情報の提供、質問への回答、その他の特定のタスクなど、ユーザーのニーズを確実に満たすことができる。

音色仕様

希望するトーンや応答スタイルを指定することで、フォーマル、フレンドリー、情報提供など、対話の適切なムードが設定される。

その他の指示

このカテゴリーには、リンクや画像の追加、挨拶の提供、特定のデータの収集など、さまざまな指示が含まれます。

文脈との関連性を作る

熟考してプロンプトを作成することは、RAGとLLMの相乗効果により、文脈を意識した、ユーザーの要求に非常に適切な回答が得られるようにする戦略的アプローチであり、全体的なユーザーエクスペリエンスを向上させる。

コーディーのRAG APIを選ぶ理由

さて、RAGの意義とその核となるコンポーネントを紐解いたところで、RAGを実現するための究極のパートナーとしてコーディを紹介しよう。 Codyは、効率的なデータ検索と処理に必要なすべての重要な要素を組み合わせた包括的なRAG APIを提供しており、RAGの旅に最適な選択肢となっています。

モデルにとらわれない

最新のAIトレンドに対応するためにモデルを切り替える心配はない。 CodyのRAG APIを使えば、追加コストなしで、大規模な言語モデルをオンザフライで簡単に切り替えることができます。

比類なき汎用性

CodyのRAG APIは、さまざまなファイル形式を効率的に処理し、最適なデータ編成のためにテキスト階層を認識するなど、優れた汎用性を発揮する。

カスタムチャンキングアルゴリズム

その際立った特徴は、高度なチャンキング・アルゴリズムにあり、メタデータを含む包括的なデータ・セグメンテーションを可能にし、優れたデータ管理を保証する。

比較にならないスピード

インデックスの数に関係なく、直線的なクエリ時間で、大規模なデータ検索を確実に高速化します。 お客様のデータニーズに迅速な結果を保証します。

シームレスな統合とサポート

Codyは、一般的なプラットフォームとのシームレスな統合と包括的なサポートを提供し、お客様のRAGエクスペリエンスを向上させ、効率的なデータ検索と処理のトップチョイスとしての地位を確固たるものにします。 技術的な専門知識を必要としない直感的なユーザー・インターフェイスは、あらゆるレベルの人にとってアクセスしやすく使いやすいものであり、データの検索と処理をさらに効率化する。

データ・インタラクションを高めるRAG API機能

RAG(Retrieval-AugmentedGeneration)の探求において、私たちは大規模言語モデル(LLM)をセマンティック検索、ベクトルデータベース、プロンプトと統合し、データ検索と処理を強化する多用途なソリューションを発見した。

モデルにとらわれず、領域にもとらわれないRAGは、多様なアプリケーションにおいて大きな可能性を秘めている。 CodyのRAG APIは、柔軟なファイル操作、高度なチャンキング、迅速なデータ検索、シームレスな統合といった機能を提供することで、この約束をさらに高めている。 この組み合わせは、データ・エンゲージメントに革命を起こそうとしている。

このデータ・トランスフォーメーションを受け入れる準備はできているだろうか? Cody AIで、データ・インタラクションを再定義し、データ処理の新時代を切り拓こう。

よくあるご質問

1.RAGと大規模言語モデル(LLM)の違いは?

RAG API(Retrieval-Augmented Generation API)とLLM(Large Language Models)は連携して動作する。

RAG APIは、検索メカニズムと生成言語モデル(LLM)という2つの重要な要素を組み合わせたアプリケーション・プログラミング・インターフェースである。 その主な目的は、データ検索とコンテンツ生成を強化することであり、特にコンテキストを意識した対応に重点を置いている。 RAG APIは、質問応答、コンテンツ生成、テキスト要約などの特定のタスクに適用されることが多い。 これは、ユーザーのクエリに対して、文脈に関連した回答をもたらすように設計されている。

一方、LLM(Large Language Models)は、GPT(Generative Pre-trained Transformer)のような、より広範な言語モデルのカテゴリーを構成する。 これらのモデルは広範なデータセットで事前に訓練されており、様々な自然言語処理タスクに対して人間のようなテキストを生成することができる。 検索と生成に対応する一方で、その汎用性は翻訳、感情分析、テキスト分類など、さまざまな用途に広がっている。

要するに、RAG APIは、特定のアプリケーションにおけるコンテキストを考慮した応答のために、検索と生成を組み合わせた特別なツールである。 対照的に、LLMは様々な自然言語処理タスクの基礎となる言語モデルであり、検索や生成だけでなく、より広範な応用の可能性を提供する。

2.RAGとLLM-何が良いのか、なぜ良いのか?

RAG APIとLLMのどちらを選ぶかは、特定のニーズと達成しようとするタスクの性質による。 ここでは、あなたの状況にどちらが適しているかを判断するのに役立つ考慮事項の内訳を説明する:

RAG API Ifを選択する:

コンテキストを意識した対応が必要

RAG APIは、文脈に関連した回答を提供することに優れている。 もしあなたのタスクが質問に答えたり、内容を要約したり、文脈に応じた応答を生成したりするのであれば、RAG APIは適切な選択である。

具体的な使用例

あなたのアプリケーションやサービスが、コンテキストを意識したコンテンツを必要とする、明確に定義されたユースケースを持っているなら、RAG APIがより適しているかもしれない。 これは、コンテキストが重要な役割を果たすアプリケーションのために作られている。

微調整が必要

RAG APIは微調整やカスタマイズが可能で、プロジェクトに特定の要件や制約がある場合に有利です。

LLMを選ぶなら

求められるのは多用途性

LLMはGPTモデルと同様、汎用性が高く、自然言語処理タスクを幅広く扱うことができる。 ニーズが複数の用途にまたがる場合、LLMは柔軟性を提供する。

カスタムソリューションを構築したい

カスタムの自然言語処理ソリューションを構築し、特定のユースケースに合わせて微調整したり、既存のワークフローに統合したりすることができます。

事前に訓練された言語理解が必要

LLMは膨大なデータセットで事前に訓練されているため、すぐに強力な言語理解力を発揮する。 大量の非構造化テキストデータを扱う必要がある場合、LLMは貴重な資産となる。

3.なぜGPTモデルのようなLLMが自然言語処理で人気なのか?

LLMは、様々な言語タスクにおいて卓越したパフォーマンスを発揮することから、広く注目を集めている。 LLMは大規模なデータセットで学習される。 その結果、あらゆる言語のニュアンスを理解することで、首尾一貫した、文脈に即した、文法的に正しい文章を理解し、作成することができる。 さらに、事前に訓練されたLLMを利用できるようになったことで、AIによる自然言語理解と生成がより多くの人にとって身近なものになった。

4.LLMの典型的な応用例とは?

LLMは、以下のような幅広い言語タスクに応用されている:

自然言語理解

LLMは、感情分析、名前付きエンティティ認識、質問応答などのタスクを得意とする。 その強力な言語理解能力により、テキストデータから洞察を抽出するのに重宝される。

テキスト生成

チャットボットやコンテンツ生成のようなアプリケーションのために人間のようなテキストを生成し、首尾一貫した、文脈に関連した応答を提供することができる。

機械翻訳

機械翻訳の品質を大幅に向上させた。 彼らは驚くべき正確さと流暢さで言語間のテキストを翻訳することができる。

コンテンツの要約

長い文書やトランスクリプトを簡潔に要約することに長けており、膨大なコンテンツから必要な情報を抽出する効率的な方法を提供します。

5.LLMはどのようにして新鮮なデータと進化する課題に対応し続けることができるのか?

LLMが最新かつ効果的であり続けるようにすることは極めて重要である。 新しいデータや進化するタスクに対応するために、いくつかの戦略が採用されている:

データ補強

古い情報に起因するパフォーマンスの低下を防ぐためには、継続的なデータの増強が不可欠である。 データストアに新しい関連情報を追加することで、モデルの精度と関連性を維持することができる。

再訓練

新しいデータによるLLMの定期的な再トレーニングは一般的に行われている。 最近のデータでモデルを微調整することで、変化するトレンドに適応し、最新の状態を保つことができる。

アクティブ・ラーニング

アクティブ・ラーニングのテクニックを導入するのもひとつのアプローチだ。 これには、モデルが不確実であったり、エラーを起こしそうなインスタンスを特定し、これらのインスタンスに対するアノテーションを収集することが含まれる。 これらの注釈は、モデルの性能を向上させ、精度を維持するのに役立つ。

アマゾンの販売者向け最新ジェネレーティブAIツールは何を提供するのか?

How Does Amazon AI for Sellers Work?

アマゾンのEコマースゲームにおける最新の動きは、年次販売者会議で発表された販売者向けのジェネレーティブAIである、
アマゾンアクセラレート2023
. 新たなAI機能のおかげで、魅力的で有用な商品リストの作成が、よりシンプルになった! このブログでは、それがいったいどういうものなのかを見ていこう。

アマゾンの販売者向けジェネレーティブAI

アマゾン は、販売者向けのジェネレーティブAIを導入することで、販売ゲームを強化した。 新たに導入されたAI機能のおかげで、アマゾンの出品者は詳細で魅力的な商品説明、タイトル、出品詳細をより簡単に作成できる。

そう、その通りだ! 長くて複雑なプロセスはない。 売り手は、商品ごとにたくさんの情報を入力する必要がなくなります。 新商品を追加するのがより迅速でシンプルになる。 こうすることで、現在のリスティング広告をより充実させることができ、購入者はより安心して購入することができる。


ソース

“私たちの新しい生成的AIモデルによって、私たちは前例のない規模で、品質、パフォーマンス、効率を劇的に改善しながら、商品知識を推論し、改善し、充実させることができます。私たちのモデルは、多様な情報源、潜在的知識、論理的推論を学習することで、製品情報を推論することを学びます。例えば、仕様書に直径が記載されていれば、テーブルが丸いことを推測したり、シャツの画像から襟のスタイルを推測したりすることができます」とシェアする。

ロバート・テキエラ


アマゾン・セレクション・カタログシステム担当副社長

アマゾンの販売者向けジェネレーティブAIは一体何をするのか?

アマゾンの新しいAI機能が売り手にもたらすものは何か:

  • 出品者は、商品の概要を数語または数センテンスで投稿するだけで、アマゾンがレビュー用の高品質なテキストを作成する。
  • 売り手が望めば、編集することもできる。
  • 自動的に作成されたコンテンツをアマゾンのカタログに投稿すればいいのだ。

結果は? 売り手のための質の高いリスティング そして何だと思う? 買い物客は、買いたい商品を見つけるのに時間がかかる。

セラー向けアマゾンAIはどのように機能するのか?

アマゾンは機械学習とディープラーニングを利用して、商品情報を自動的に抽出し、改善している。 具体的には 大規模言語モデル(LLM) より詳細な商品説明を作成する。 しかし、なぜLLMなのか? さて、これらの機械学習モデルは、膨大な量のデータに基づいて学習される。 そのため、テキストやその他の素材を検出し、要約し、翻訳し、予測し、生成することができる。

なお、このアメリカの大手電子商取引企業は、LLMの教育にどのような情報を使っているのか正確には述べていない。 しかし、どうやら同社は独自の上場データを使用しているようだ。

しかし、このような大規模な生成AIモデルの使用には、ある種の懸念がある。事実と異なる誤った情報を生成する傾向があり、さらに人間がチェックしない限り気づかないようなエラーも発生する可能性がある。

とはいえ、過去数ヶ月間、多くのセラーがアマゾンの最新AI製品をテストしており、事前のフィードバックによると、その大半はAIが生成した出品コンテンツを積極的に活用しているようだ。

結論

アマゾンは、出品クリエイターがAIをより簡単に使えるようにし始めており、これはセラーが収益性の高いビジネスを始め、成長させるのを支援する方法のひとつに過ぎない。 これは、販売者の体験を向上させ、より成功した販売者をサポートするためにAIを採用する方法のほんの始まりに過ぎない。

続きを読むAI Studio by Meta

ミストラルAIとは:オープンソースモデル

The French startup Mistral AI has introduced the GenAI model. Is it the next best AI business assistant?

AI分野を破壊する大きな一歩として、フランスの新興企業ミストラルAIがGenAIビジネスアシスタントを発表した。 MetaやOpenAIのような業界大手の覇権を握る準備は整っている。 このブログでは、人工知能におけるこのエキサイティングな発展の潜在的な意味を探る。

ミストラルAIの1億1300万ドルという驚くべき評価額:その話題とは?

パリを拠点とするAI新興企業ミストラルAIは、2億6000万ドルという巨額の評価額で1億1300万ドルを調達し、多くの注目を集めた。 設立からわずか3カ月で、従業員数は20人に満たなかった。 だから、当時は評価試合のように思えた。

ミストラルAIは、オープンソースの大規模言語モデル「ミストラル7B」を発表した。 ミストラル7Bの2倍の大きさのラマ2 13Bモデルよりもすべてのパラメーターで優れている。 ミストラルのAIは、ラマ1 34Bよりも優れている。
多くのベンチマーク
.

ミストラル7B対巨人:このAIオープンソースがいかに優れているか

この軽量AIモデルは、既存の重量級AIモデルと競合している。 そして、撤退はしていない!

ミストラルAIのこれまでの業績は、わずかなコストとリソースで、その巨額の評価に値することを証明している。 ミストラルAIの成功の主な理由をいくつか紹介しよう:

  • ミストラルAIが第一世代のAIモデルを訓練するために使用した訓練方法は、より効率的である。
  • ミストラルAIのトレーニング方法は、既存の方法よりも実装コストが少なくとも2倍低い。
  • オープンソースであるため、柔軟性が高い。
  • オープンソースのモデルは微調整が容易で、それが何よりの長所だ。

ミストラルAIはこれらのモデルを誰にでもオープンにしている。 ということは、このフランスの新興企業は、より大きく、より良く、より複雑なモデルを開発するということだろうか? まあ、そうだね!

これまで、世界中のAI愛好家たちは、良質なAIビジネスアシスタントや基盤モデルを開発するメタ社に依存してきた。 つまり、ミストラルAIのGenAIモデルは、彼らにとって良い出来事なのだ。

新しいAIプレーヤーへの道を開く

AIアシスタントの分野は寡占状態にあり、その大半は米国のプレーヤーである。 しかし、これまで他の選手を寄せ付けなかったのはなぜか? その理由は、参入障壁の高さにある。 このような潜在的なAI従業員の巨人と競争するためには、作りにくい技術と莫大な投資が必要だ。

数百万ドルの資金と希少中の希少なチームを持つミストラルの参入は、この分野に混乱を引き起こす可能性がある。 実際、ミストラルはLLaVAのように、早ければ2024年にもGPT-4を上回るビジネス用AIアシスタントを開発しようとしている。

AI分野でミストラルを際立たせているものは何ですか? ミストラルの創業チームは、ビジネス向けAIアシスタント分野のリーダーで構成されている。 MetaやDeepMind出身の経験豊富な研究者を擁するミストラルの急ピッチの成功は偶然ではなく、MetaやOpenAIに匹敵する彼らの将来計画はよく練られているようだ。

ミストラルAIの新しいAIビジネス・アシスタント・モデルの柔軟性とオープンソース・ライセンスは、誰もがAI分野に参入できる均等な土壌を提供する。 しかし、このモデルは無制限に使用できるため、倫理的な使用が懸念される。

結論

ミストラルはAIの波に順調に乗り、このフランスの新興企業は、メタやオープンAIが提供するビジネス向けの独自AIソリューションと、創業から数年以内に厳しい競争を繰り広げる準備が整っている。

もう一人のビッグプレーヤーが登場した今、言語モデルだけでなく、他の種類のモデルも登場することが予想される。 このような高品質のオープンソースモデルは、AI業界の変化を示している。 これは、Mistral AIのような新しいビジネスAIモデルが、MetaやOpenAIのような米国のAI大手と直接競合することを意味する。

続きを読む2023年のAIツール・ディレクトリ・トップ6