Czy zastanawiałeś się kiedyś, w jaki sposób prywatne chmury zarządzają wszystkimi informacjami i podejmują inteligentne decyzje?
W tym miejscu wkracza Retrieval-Augmented Generation (RAG).
Jest to super inteligentne narzędzie, które pomaga prywatnym chmurom znaleźć odpowiednie informacje i wygenerować z nich przydatne rzeczy.
Ten blog jest poświęcony temu, jak RAG działa magicznie w chmurach prywatnych, wykorzystując proste narzędzia i sprytne sztuczki, aby wszystko działało płynniej i lepiej.
Zanurz się.
Zrozumienie RAG: Co to jest?
Retrieval-Augmented Generation (RAG) to najnowocześniejsza technologia wykorzystywana w przetwarzaniu języka naturalnego (NLP) i systemach wyszukiwania informacji.
Łączy w sobie dwa podstawowe procesy: pobieranie i generowanie.
- Odzyskiwanie: W RAG proces wyszukiwania obejmuje pobieranie odpowiednich danych z różnych źródeł zewnętrznych, takich jak repozytoria dokumentów, bazy danych lub interfejsy API. Te zewnętrzne dane mogą być zróżnicowane, obejmując informacje z różnych źródeł i formatów.
- Generacja: Po pobraniu odpowiednich danych proces generowania obejmuje tworzenie lub generowanie nowych treści, spostrzeżeń lub odpowiedzi w oparciu o pobrane informacje. Ta wygenerowana zawartość uzupełnia istniejące dane i pomaga w podejmowaniu decyzji lub udzielaniu dokładnych odpowiedzi.
Jak działa RAG?
Zrozummy teraz, jak działa RAG.
Przygotowanie danych
Początkowy etap obejmuje konwersję zarówno dokumentów przechowywanych w kolekcji, jak i zapytań użytkowników do porównywalnego formatu. Ten krok ma kluczowe znaczenie dla wyszukiwania podobieństw.
Reprezentacja numeryczna (Embeddings)
Aby dokumenty i zapytania użytkowników były porównywalne do wyszukiwania podobieństw, są one konwertowane na reprezentacje numeryczne zwane osadzeniami.
Te osadzenia są tworzone przy użyciu zaawansowanych modeli języka osadzania i zasadniczo służą jako wektory numeryczne reprezentujące pojęcia w tekście.
Wektorowa baza danych
Osadzenia dokumentów, które są numerycznymi reprezentacjami tekstu, mogą być przechowywane w wektorowych bazach danych, takich jak Chroma lub Weaviate. Te bazy danych umożliwiają wydajne przechowywanie i pobieranie zagnieżdżeń w celu wyszukiwania podobieństw.
Wyszukiwanie podobieństw
W oparciu o osadzenie wygenerowane na podstawie zapytania użytkownika, w przestrzeni osadzenia przeprowadzane jest wyszukiwanie podobieństwa. Wyszukiwanie to ma na celu zidentyfikowanie podobnego tekstu lub dokumentów z kolekcji na podstawie liczbowego podobieństwa ich zagnieżdżeń.
Dodanie kontekstu
Po zidentyfikowaniu podobnego tekstu, pobrana treść (podpowiedź + wprowadzony tekst) jest dodawana do kontekstu. Ten rozszerzony kontekst, obejmujący zarówno oryginalny monit, jak i odpowiednie dane zewnętrzne, jest następnie wprowadzany do modelu językowego (LLM).
Wyjście modelu
Model językowy przetwarza kontekst z odpowiednimi danymi zewnętrznymi, umożliwiając generowanie dokładniejszych i kontekstowo odpowiednich wyników lub odpowiedzi.
Czytaj więcej: Czym jest i jak działa RAG API Framework?
5 kroków do wdrożenia RAG w środowiskach chmury prywatnej
Poniżej znajduje się kompleksowy przewodnik dotyczący wdrażania RAG w chmurach prywatnych:
1. Ocena gotowości infrastruktury
Rozpocznij od oceny istniejącej infrastruktury chmury prywatnej. Ocena sprzętu, oprogramowania i możliwości sieciowych w celu zapewnienia zgodności z wdrożeniem RAG. Zidentyfikuj wszelkie potencjalne ograniczenia lub wymagania dotyczące płynnej integracji.
2. Gromadzenie i przygotowanie danych
Gromadzenie odpowiednich danych z różnych źródeł w środowisku chmury prywatnej. Może to obejmować repozytoria dokumentów, bazy danych, interfejsy API i inne wewnętrzne źródła danych.
Upewnij się, że zebrane dane są uporządkowane, wyczyszczone i przygotowane do dalszego przetwarzania. Dane powinny być w formacie, który można łatwo wprowadzić do systemu RAG w celu wyszukiwania i generowania procesów.
3. Wybór odpowiednich modeli języka osadzania
Wybierz odpowiednie modele języka osadzania, które są zgodne z wymaganiami i skalą środowiska chmury prywatnej. Modele takie jak BERT, GPT lub inne zaawansowane modele językowe mogą być rozważane w oparciu o ich kompatybilność i wskaźniki wydajności.
4. Integracja systemów osadzania
Wdrożenie systemów lub frameworków zdolnych do konwersji dokumentów i zapytań użytkowników na reprezentacje numeryczne (embeddings). Upewnij się, że te osadzenia dokładnie oddają semantyczne znaczenie i kontekst danych tekstowych.
Skonfiguruj wektorowe bazy danych (np. Chroma, Weaviate), aby efektywnie przechowywać i zarządzać tymi osadzeniami, umożliwiając szybkie wyszukiwanie i wyszukiwanie podobieństw.
5. Testowanie i optymalizacja
Przeprowadzenie rygorystycznych testów w celu walidacji funkcjonalności, dokładności i wydajności wdrożonego systemu RAG w środowisku chmury prywatnej. Przetestuj różne scenariusze, aby zidentyfikować potencjalne ograniczenia lub obszary wymagające poprawy.
Optymalizacja systemu w oparciu o wyniki testów i informacje zwrotne, udoskonalanie algorytmów, dostrajanie parametrów lub modernizacja komponentów sprzętowych/programowych w celu uzyskania lepszej wydajności.
6 Narzędzia do wdrażania RAG w chmurach prywatnych
Oto przegląd narzędzi i struktur niezbędnych do wdrożenia Retrieval-Augmented Generation (RAG) w środowiskach chmury prywatnej:
1. Osadzanie modeli językowych
- BERT (Bidirectional Encoder Representations from Transformers): BERT to potężny, wstępnie wytrenowany model językowy zaprojektowany w celu zrozumienia kontekstu słów w zapytaniach wyszukiwania. Można go precyzyjnie dostosować do określonych zadań wyszukiwania w środowiskach chmury prywatnej.
- GPT (Generative Pre-trained Transformer): Modele GPT wyróżniają się w generowaniu tekstu podobnego do ludzkiego na podstawie podanych podpowiedzi. Mogą one odgrywać kluczową rolę w generowaniu odpowiedzi lub treści w systemach RAG.
2. Wektorowe bazy danych
- Chroma: Chroma to wyszukiwarka wektorowa zoptymalizowana pod kątem obsługi danych wielowymiarowych, takich jak osadzenia. Skutecznie przechowuje i pobiera osadzenia, ułatwiając szybkie wyszukiwanie podobieństw.
- Weaviate: Weaviate to wyszukiwarka wektorowa typu open-source, odpowiednia do zarządzania i wyszukiwania danych wektorowych. Oferuje elastyczność i skalowalność, idealną dla wdrożeń RAG zajmujących się dużymi zbiorami danych.
3. Ramy dla generowania osadzania
- TensorFlow: TensorFlow zapewnia narzędzia i zasoby do tworzenia modeli uczenia maszynowego i zarządzania nimi. Oferuje biblioteki do generowania osadzeń i integrowania ich z systemami RAG.
- PyTorch: PyTorch to kolejny popularny framework do głębokiego uczenia, znany ze swojej elastyczności i łatwości użytkowania. Obsługuje tworzenie modeli osadzania i ich integrację z przepływami pracy RAG.
4. Platformy integracyjne RAG
- Przytulanie transformatorów twarzy: Ta biblioteka oferuje szeroki zakres wstępnie wytrenowanych modeli, w tym BERT i GPT, ułatwiając ich integrację z systemami RAG. Zapewnia narzędzia do obsługi osadzeń i interakcji modeli językowych.
- GPT OpenAI–3 API: API OpenAI zapewnia dostęp do GPT-3, umożliwiając programistom wykorzystanie jego potężnych możliwości generowania języka. Integracja GPT-3 z systemami RAG może poprawić generowanie treści i dokładność odpowiedzi.
5. Usługi w chmurze
- AWS (Amazon Web Services) lub Azure: Dostawcy usług w chmurze oferują infrastrukturę i usługi niezbędne do hostowania i skalowania wdrożeń RAG. Zapewniają one zasoby, takie jak maszyny wirtualne, pamięć masową i moc obliczeniową dostosowaną do aplikacji uczenia maszynowego.
- Google Cloud Platform (GCP): GCP oferuje zestaw narzędzi i usług do uczenia maszynowego i sztucznej inteligencji, umożliwiając wdrażanie i zarządzanie systemami RAG w środowiskach chmury prywatnej.
6. Niestandardowe narzędzia programistyczne
- Biblioteki Pythona: Biblioteki te oferują niezbędne funkcje do manipulacji danymi, obliczeń numerycznych i tworzenia modeli uczenia maszynowego, co ma kluczowe znaczenie dla wdrażania niestandardowych rozwiązań RAG.
- Niestandardowe interfejsy API i Skrypty: W zależności od konkretnych wymagań, opracowanie niestandardowych interfejsów API i skryptów może być konieczne do dostrojenia i integracji komponentów RAG w infrastrukturze chmury prywatnej.
Zasoby te odgrywają kluczową rolę w ułatwianiu generowania osadzania, integracji modeli i wydajnego zarządzania systemami RAG w konfiguracjach chmury prywatnej.
Teraz, gdy znasz już podstawy RAG dla chmur prywatnych, nadszedł czas, aby wdrożyć je przy użyciu skutecznych narzędzi wymienionych powyżej.