Tag: chmury prywatne

RAG dla chmur prywatnych: jak to działa?

rag for private clouds

Czy zastanawiałeś się kiedyś, w jaki sposób prywatne chmury zarządzają wszystkimi informacjami i podejmują inteligentne decyzje?

W tym miejscu wkracza Retrieval-Augmented Generation (RAG).

Jest to super inteligentne narzędzie, które pomaga prywatnym chmurom znaleźć odpowiednie informacje i wygenerować z nich przydatne rzeczy.

Ten blog jest poświęcony temu, jak RAG działa magicznie w chmurach prywatnych, wykorzystując proste narzędzia i sprytne sztuczki, aby wszystko działało płynniej i lepiej.

Zanurz się.

Zrozumienie RAG: Co to jest?

Retrieval-Augmented Generation (RAG) to najnowocześniejsza technologia wykorzystywana w przetwarzaniu języka naturalnego (NLP) i systemach wyszukiwania informacji.

Łączy w sobie dwa podstawowe procesy: pobieranie i generowanie.

  1. Odzyskiwanie: W RAG proces wyszukiwania obejmuje pobieranie odpowiednich danych z różnych źródeł zewnętrznych, takich jak repozytoria dokumentów, bazy danych lub interfejsy API. Te zewnętrzne dane mogą być zróżnicowane, obejmując informacje z różnych źródeł i formatów.

  2. Generacja: Po pobraniu odpowiednich danych proces generowania obejmuje tworzenie lub generowanie nowych treści, spostrzeżeń lub odpowiedzi w oparciu o pobrane informacje. Ta wygenerowana zawartość uzupełnia istniejące dane i pomaga w podejmowaniu decyzji lub udzielaniu dokładnych odpowiedzi.

Jak działa RAG?

Zrozummy teraz, jak działa RAG.

Przygotowanie danych

Początkowy etap obejmuje konwersję zarówno dokumentów przechowywanych w kolekcji, jak i zapytań użytkowników do porównywalnego formatu. Ten krok ma kluczowe znaczenie dla wyszukiwania podobieństw.

Reprezentacja numeryczna (Embeddings)

Aby dokumenty i zapytania użytkowników były porównywalne do wyszukiwania podobieństw, są one konwertowane na reprezentacje numeryczne zwane osadzeniami.

Te osadzenia są tworzone przy użyciu zaawansowanych modeli języka osadzania i zasadniczo służą jako wektory numeryczne reprezentujące pojęcia w tekście.

Wektorowa baza danych

Osadzenia dokumentów, które są numerycznymi reprezentacjami tekstu, mogą być przechowywane w wektorowych bazach danych, takich jak Chroma lub Weaviate. Te bazy danych umożliwiają wydajne przechowywanie i pobieranie zagnieżdżeń w celu wyszukiwania podobieństw.

Wyszukiwanie podobieństw

W oparciu o osadzenie wygenerowane na podstawie zapytania użytkownika, w przestrzeni osadzenia przeprowadzane jest wyszukiwanie podobieństwa. Wyszukiwanie to ma na celu zidentyfikowanie podobnego tekstu lub dokumentów z kolekcji na podstawie liczbowego podobieństwa ich zagnieżdżeń.

Dodanie kontekstu

Po zidentyfikowaniu podobnego tekstu, pobrana treść (podpowiedź + wprowadzony tekst) jest dodawana do kontekstu. Ten rozszerzony kontekst, obejmujący zarówno oryginalny monit, jak i odpowiednie dane zewnętrzne, jest następnie wprowadzany do modelu językowego (LLM).

Wyjście modelu

Model językowy przetwarza kontekst z odpowiednimi danymi zewnętrznymi, umożliwiając generowanie dokładniejszych i kontekstowo odpowiednich wyników lub odpowiedzi.

Czytaj więcej: Czym jest i jak działa RAG API Framework?

5 kroków do wdrożenia RAG w środowiskach chmury prywatnej

Poniżej znajduje się kompleksowy przewodnik dotyczący wdrażania RAG w chmurach prywatnych:

1. Ocena gotowości infrastruktury

Rozpocznij od oceny istniejącej infrastruktury chmury prywatnej. Ocena sprzętu, oprogramowania i możliwości sieciowych w celu zapewnienia zgodności z wdrożeniem RAG. Zidentyfikuj wszelkie potencjalne ograniczenia lub wymagania dotyczące płynnej integracji.

2. Gromadzenie i przygotowanie danych

Gromadzenie odpowiednich danych z różnych źródeł w środowisku chmury prywatnej. Może to obejmować repozytoria dokumentów, bazy danych, interfejsy API i inne wewnętrzne źródła danych.

Upewnij się, że zebrane dane są uporządkowane, wyczyszczone i przygotowane do dalszego przetwarzania. Dane powinny być w formacie, który można łatwo wprowadzić do systemu RAG w celu wyszukiwania i generowania procesów.

3. Wybór odpowiednich modeli języka osadzania

Wybierz odpowiednie modele języka osadzania, które są zgodne z wymaganiami i skalą środowiska chmury prywatnej. Modele takie jak BERT, GPT lub inne zaawansowane modele językowe mogą być rozważane w oparciu o ich kompatybilność i wskaźniki wydajności.

4. Integracja systemów osadzania

Wdrożenie systemów lub frameworków zdolnych do konwersji dokumentów i zapytań użytkowników na reprezentacje numeryczne (embeddings). Upewnij się, że te osadzenia dokładnie oddają semantyczne znaczenie i kontekst danych tekstowych.

Skonfiguruj wektorowe bazy danych (np. Chroma, Weaviate), aby efektywnie przechowywać i zarządzać tymi osadzeniami, umożliwiając szybkie wyszukiwanie i wyszukiwanie podobieństw.

5. Testowanie i optymalizacja

Przeprowadzenie rygorystycznych testów w celu walidacji funkcjonalności, dokładności i wydajności wdrożonego systemu RAG w środowisku chmury prywatnej. Przetestuj różne scenariusze, aby zidentyfikować potencjalne ograniczenia lub obszary wymagające poprawy.

Optymalizacja systemu w oparciu o wyniki testów i informacje zwrotne, udoskonalanie algorytmów, dostrajanie parametrów lub modernizacja komponentów sprzętowych/programowych w celu uzyskania lepszej wydajności.

6 Narzędzia do wdrażania RAG w chmurach prywatnych

Oto przegląd narzędzi i struktur niezbędnych do wdrożenia Retrieval-Augmented Generation (RAG) w środowiskach chmury prywatnej:

1. Osadzanie modeli językowych

  • BERT (Bidirectional Encoder Representations from Transformers): BERT to potężny, wstępnie wytrenowany model językowy zaprojektowany w celu zrozumienia kontekstu słów w zapytaniach wyszukiwania. Można go precyzyjnie dostosować do określonych zadań wyszukiwania w środowiskach chmury prywatnej.
  • GPT (Generative Pre-trained Transformer): Modele GPT wyróżniają się w generowaniu tekstu podobnego do ludzkiego na podstawie podanych podpowiedzi. Mogą one odgrywać kluczową rolę w generowaniu odpowiedzi lub treści w systemach RAG.

2. Wektorowe bazy danych

  • Chroma: Chroma to wyszukiwarka wektorowa zoptymalizowana pod kątem obsługi danych wielowymiarowych, takich jak osadzenia. Skutecznie przechowuje i pobiera osadzenia, ułatwiając szybkie wyszukiwanie podobieństw.
  • Weaviate: Weaviate to wyszukiwarka wektorowa typu open-source, odpowiednia do zarządzania i wyszukiwania danych wektorowych. Oferuje elastyczność i skalowalność, idealną dla wdrożeń RAG zajmujących się dużymi zbiorami danych.

3. Ramy dla generowania osadzania

  • TensorFlow: TensorFlow zapewnia narzędzia i zasoby do tworzenia modeli uczenia maszynowego i zarządzania nimi. Oferuje biblioteki do generowania osadzeń i integrowania ich z systemami RAG.
  • PyTorch: PyTorch to kolejny popularny framework do głębokiego uczenia, znany ze swojej elastyczności i łatwości użytkowania. Obsługuje tworzenie modeli osadzania i ich integrację z przepływami pracy RAG.

4. Platformy integracyjne RAG

  • Przytulanie transformatorów twarzy: Ta biblioteka oferuje szeroki zakres wstępnie wytrenowanych modeli, w tym BERT i GPT, ułatwiając ich integrację z systemami RAG. Zapewnia narzędzia do obsługi osadzeń i interakcji modeli językowych.
  • GPT OpenAI3 API: API OpenAI zapewnia dostęp do GPT-3, umożliwiając programistom wykorzystanie jego potężnych możliwości generowania języka. Integracja GPT-3 z systemami RAG może poprawić generowanie treści i dokładność odpowiedzi.

5. Usługi w chmurze

  • AWS (Amazon Web Services) lub Azure: Dostawcy usług w chmurze oferują infrastrukturę i usługi niezbędne do hostowania i skalowania wdrożeń RAG. Zapewniają one zasoby, takie jak maszyny wirtualne, pamięć masową i moc obliczeniową dostosowaną do aplikacji uczenia maszynowego.
  • Google Cloud Platform (GCP): GCP oferuje zestaw narzędzi i usług do uczenia maszynowego i sztucznej inteligencji, umożliwiając wdrażanie i zarządzanie systemami RAG w środowiskach chmury prywatnej.

6. Niestandardowe narzędzia programistyczne

  • Biblioteki Pythona: Biblioteki te oferują niezbędne funkcje do manipulacji danymi, obliczeń numerycznych i tworzenia modeli uczenia maszynowego, co ma kluczowe znaczenie dla wdrażania niestandardowych rozwiązań RAG.
  • Niestandardowe interfejsy API i Skrypty: W zależności od konkretnych wymagań, opracowanie niestandardowych interfejsów API i skryptów może być konieczne do dostrojenia i integracji komponentów RAG w infrastrukturze chmury prywatnej.

Zasoby te odgrywają kluczową rolę w ułatwianiu generowania osadzania, integracji modeli i wydajnego zarządzania systemami RAG w konfiguracjach chmury prywatnej.

Teraz, gdy znasz już podstawy RAG dla chmur prywatnych, nadszedł czas, aby wdrożyć je przy użyciu skutecznych narzędzi wymienionych powyżej.